首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Racemic 2‐amino‐1,2,3,4‐tetrahydronaphthalene‐5,6‐diol (5,6‐ADTN; 4 ) was synthesized from 5,6‐dimethoxynaphthalene‐2‐carboxylic acid ( 14 ) in four steps (60% overall yield; Scheme). The crucial steps of the synthesis are Birch reduction of 14 to the valuable synthon 15 , Curtius reaction and carbamate formation ( 16 ), hydrogenolysis ( 17 ), and demethylation to the biologically active hydrobromide salt 18 of 4 .  相似文献   

2.
The oxidation of 1‐(3,8‐dimethylazulen‐1‐yl)alkan‐1‐ones 1 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (=4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile; DDQ) in acetone/H2O mixtures at room temperature does not only lead to the corresponding azulene‐1‐carboxaldehydes 2 but also, in small amounts, to three further products (Tables 1 and 2). The structures of the additional products 3 – 5 were solved spectroscopically, and that of 3a also by an X‐ray crystal‐structure analysis (Fig. 1). It is demonstrated that the bis(azulenylmethyl)‐substituted DDQ derivatives 5 yield on methanolysis or hydrolysis precursors, which in a cascade of reactions rearrange under loss of HCl into the pentacyclic compounds 3 (Schemes 4 and 7). The found 1,1′‐[carbonylbis(8‐methylazulene‐3,1‐diyl)]bis[ethanones] 4 are the result of further oxidation of the azulene‐1‐carboxaldehydes 2 to the corresponding azulene‐1‐carboxylic acids (Schemes 9 and 10).  相似文献   

3.
6‐Methoxyflavone ( 7 ) easily afforded two hydrodimers of rac‐6,6Prime;‐dimethoxy‐2,2″‐biflavanone ( 8a ) and meso‐6,6″‐dimethoxy‐2,2″‐biflavanone ( 8b ) and one reductive product of 6‐methoxyflavanone ( 9 ) by using photolysis with the electron‐donating amines including triethylamine, 2‐(N,N‐dimethylamino)ethanol or N,N‐dimethylaniline in solvents of acetonitrile, benzene or methylene dichloride. They were found to give higher yields of rac‐6,6″‐dimethoxy‐2,2″‐biflavanone ( 8a ) and meso‐6,6″‐dimethoxy‐2,2″‐biflavanone ( 8b ) (38.7% and 4.5%, 35.3% and 6.2%, respectively) in the reaction conditions of 1/10 molar ratio of 6‐methoxy‐flavone ( 7 ) to triethylamine in a solvent of acetonitrile with irradiation of twenty‐four hours by using 306 nm and 352 nm lamps.  相似文献   

4.
The therapeutic drug monitoring of paroxetine could be used to optimize the pharmacological treatment of depressed patients. A simple and sensitive high‐performance liquid chromatography procedure was developed for the determination of paroxetine in serum. After simple pretreatment of serum (50 μL) with acetonitrile and o‐phthalaldehyde, paroxetine was derivatized with 4‐(5,6‐dimethoxy‐2‐phthalimidinyl)‐2‐methoxyphenylsulfonyl chloride at 70°C for 20 min in borate buffer (0.1 mol/L, pH 8.0) to produce a fluorescent product. The derivative was separated on a reversed‐phase column at 40°C for stepwise elution with (A) acetic acid (10 mmol/L) and (B) acetonitrile. The flow rate was 1.0 mL/min. The fluorescence intensity was monitored at excitation and emission wavelengths of 320 and 400 nm, respectively. The within‐day and day‐to‐day relative standard deviations were 3.0–3.4 and 2.7–8.3%, respectively. The detection limit of paroxetine was 8.3 fmol at a signal‐to‐noise ratio of 3. As the proposed method that only requires a small quantity of serum (50 μL) is simple, sensitive and reproducible, it would be useful for clinical and biochemical research as well as drug monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
3-[1′(1′H)-Substituent-pyrazol-5′-yl]benzo[5,6]coumarins and 3-(1′,2′-oxazol-5′-yl)benzo[5,6]coumarin were prepared via condensation of 3-(2′-formyl-1′-chlorovinyl)benzo[5,6] coumarin with hydrazine derivatives or hydroxylamine.Reaction of 3-[1′(1′H)-pyrazol-5′-yl]benzo[5,6]coumarin with alkyl halides,olefinic compunds or acid chlorides are described.  相似文献   

6.
3‐methyl‐1‐sulfonic acid imidazolium tetrachloroferrate {[Msim]FeCl4} was prepared and fully characterized by fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX) and vibrating sample magnetometer (VSM) and used, as an efficient catalyst, for the tandem reaction of β‐naphthol with aromatic aldehydes and benzamide at 110 °C under solvent‐free conditions to give 1‐amidoalkyl‐2‐naphthols in high yields and very short reaction times.  相似文献   

7.
Tumor angiogenesis has become an important target for antitumor therapy, with most current therapies aimed at blocking the vascular endothelial growth factor (VEGF) pathway. The VEGF and its receptors have been implicated as key factors in tumor angiogenesis and are major targets in cancer therapy. A series of aryl‐modified benzoylamino‐N‐(5,6‐dimethoxy‐1H‐benzoimidazol‐2‐yl)‐heteroamides were synthesized from 2‐amino‐5,6‐dimethoxy benzimidazole and aryl‐substituted benzoylamino hetero acids. The new compounds were tested for inhibition of VEGF receptors I and II (VEGFR‐1 and VEGFR‐2). Compound 6e displayed VEGFR‐2 inhibitory activity with a 50% inhibition concentration value as low as 0.020 μM in a homogeneous time‐resolved fluorescence enzymatic assay. VEGFR‐2 active compounds display good activity against VEGFR‐1 as well.  相似文献   

8.
We hereby report the first preparation of the 5,6‐dihydro‐4H‐furo[2,3‐c]pyrrol‐4‐one ( 3 ) and its derivatives starting from methyl 3‐(methoxycarbonyl)furan‐2‐acetate ( 8 ). The ester functionality connected to the methylene group was regiospecifically converted to the desired monohydrazide 9 . Conversion of 9 into the acyl azide 10 followed by Curtius rearrangement gave the corresponding isocyanate derivative 11 (Scheme 2). Reaction of 11 with different nucleophiles produced urethane and urea derivatives (Scheme 3). Intramolecular cyclization reactions provided the target compounds (Scheme 5). Removal of the amine‐protecting group formed the title compound 3 .  相似文献   

9.
New 6,6‐dimethyl‐2‐oxo‐4‐{2‐[5‐alkylsilyl(germyl)]furan(thiophen)‐2‐yl}vinyl‐5,6‐dihydro‐2H‐pyran‐3‐carbonitriles (IC50: 1–6 µg ml?1) have been prepared by the condensation of corresponding silicon‐ and germanium‐containing furyl(thienyl)‐2‐carbaldehydes with 3‐cyano‐4,6,6‐trimethyl‐5,6‐dihydropyran‐2‐one using piperidine acetate as a catalyst. The obtained carbonitriles were identified using NMR (1H, 13C and 29Si) spectroscopy and GC‐MS. The structure of 6,6‐dimethyl‐2‐oxo‐4‐[2‐(5‐trimethylsilyl)thiophen‐2‐yl]‐5,6‐dihydro‐2H‐pyran‐3‐carbonitrile was studied using X‐ray diffractometry. The influences of the heterocycle and the structure of the organoelement substituent on cytotoxicity and on matrix metalloproteinase inhibition have been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper 1‐(2‐pyridylazo)‐2‐naphthol (PAN) and ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) were mixed with graphite powder to get a modified carbon paste electrode (PAN‐IL‐CPE), which was further used for the sensitive determination of bismuth(III). By the co‐contribution of the formation of PAN‐Bi complex and the accumulation effect of IL, more bismuth(III) was electrodeposited on the surface of the PAN‐IL‐CPE. Then the reduced Bi was oxidized and detected by differential pulse anodic stripping voltammetry (DPASV) with the oxidation peak appeared at 0.17 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the bismuth(III) concentration in the range from 0.04 to 7.5 μmol L?1 with the detection limit as 3.9 nmol L?1. The proposed method was successfully applied to the stomach medicine sample detection with good recovery.  相似文献   

11.
1,3,5‐Trihydroxy‐9(10H)‐acridinone (1) was prepared from 3‐hydroxyanthranillic acid with phloroglucinol. 1,3‐Dihydroxy‐5‐methoxy‐9(10H)‐acridinone (2) was prepared from 3‐methoxyanthranillic acid and phloroglucinol. Methylation of 1 under different conditions gave 1‐hydroxy‐3,5‐dimethoxy (3), 1‐hydroxy‐3,5‐dimethoxy‐10‐methyl (4), 1‐hydroxy‐3,5‐dimethoxy‐4‐methyl (5), 1,3,5‐trimethoxy‐10‐methyl (6) and 1,3,5‐trimethoxy‐4,10‐dimethyl (7) analogues. Demethylation of 4 afforded the 1,3,5‐trihydroxy‐10‐methyl analogue 8. Condensation of acridones 1, 2, 3 and 4 individually with E‐suberenol (9) gave four novel acrimarins (acridone‐coumarin dimers) 10, 11, 12 and 13 respectively, while the acridone 8 gave previously reported acrimarin‐G (14).  相似文献   

12.
Heterocyclization of bis(2‐oxo‐indol‐3‐ylidene)‐galactaric acid hydrazide ( 3 ) with a variety of one‐nitrogen cyclizing agents gave the corresponding 1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 4–8 . Acetylation of the latter double headed acyclo C‐nucleosides with acetic anhydride in the presence of pyridine at ambient temperature resulted in N‐ and O‐acetylation to give the corresponding 1,2,3,4‐tetra‐O‐acetyl‐1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 9–13 which were found to exist in centro‐symmetric zigzag conformations 20 . The assigned structures were corroborated by 1H, 13C NMR as well as mass spectra.  相似文献   

13.
An efficient synthesis of 7‐alkyl‐6H,7H‐naphtho‐[10,20:5,6]pyrano[3,2‐c]chromen‐6‐ones by three‐component condensation reaction of β‐naphthol, aromatic aldehydes, and 4‐hydroxycoumarin catalyzed by 1‐methyl‐3‐(2‐(sulfooxy)ethyl)‐1H‐imidazol‐3‐ium chloride is reported in good to excellent yields and short reaction times.  相似文献   

14.
A simple method for the cyclocondensation of substituted isoflavones with cyanoacetamide in the presence of sodium hydroxide to give an array of 3‐cyano‐5,6‐diarylpyridin‐2(1H)‐ones in good yields is reported.  相似文献   

15.
A new chiral ligand 6,6′‐dimethoxy‐2,2′‐diaminobiphenyl was successfully prepared from 3‐nitrophenol via iodination, Ullmann coupling, and reduction. The resolving reagent (2R, 3R)‐ or (2S,3S)‐2,3‐di (phenylaminocarbonyl)tartaric acid was prepared from commercially available tartaric acid in large scale and was used to resolve the racemic 6,6′‐dimethoxy‐2,2′‐diaminobiphenyl. The chiral 6,6′‐ dimethoxy‐2,2′‐diaminobiphenyl obtained was proved to be enantiomerically pure.  相似文献   

16.
Shusu Shen  Yu Liu 《中国化学》2014,32(11):1107-1110
By the treatment of N‐3‐bromo‐3‐alkenylthioamides with sodium hydroxide in DMF‐H2O in the presence of tetra‐butylammonium bromide, series of 6‐alkylidene‐5,6‐dihydro‐4H‐1,3‐thiazine derivatives were prepared in moderate to good yields. The cyclization is supposed to proceed via both the intramolecular vinylic nucleophilic substitution and the elimination‐addition mechanisms (formation of acetylenic intermediates) in a competitive manner.  相似文献   

17.
An efficient and convenient route was developed for the synthesis of new pyridinecarbonitrile derivatives by using the Pinner type of reaction. The 2‐((E)‐2‐((dimethylamino)methylene)‐1,2‐dihydro‐5,6‐dimethoxyinden‐3‐ylidene) malononitrile 2 was reacted in the presence of dry HCl gas to yield 3‐chloro‐6,7‐dimethoxy‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitrile ( 3 ) in good yield. The SNAr reaction on compound 3 with various nucleophiles yielded 3‐substituted pyridinecarbonitriles 4 , 5 , 6 , 7 , 8 , 9 in moderate to good yield.  相似文献   

18.
An immobilized Co (II) Schiff base complex supported on multi‐wall carbon nanotubes was synthesized and characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy , thermogravimetric analysis and inductively coupled plasma mass spectrometry. It was shown that the supported complex is a facile, eco‐friendly, recyclable, reusable and green catalyst for three‐component condensation of 2‐naphthol and acetamide with various aldehydes for the synthesis of 1‐amidoalkyl‐2‐naphthol derivatives under solvent‐free conditions. Also, in a further study, the catalytic application was studied in the synthesis of tetrahydrobenzo[b ]pyran derivatives via the condensation reaction of malononitrile and dimedone with several aromatic aldehydes. The procedures suggested here for the synthesis of 1‐amidoalkyl‐2‐naphthol and tetrahydrobenzo[b ]pyran derivatives offer several advantages, such as stability, recyclability and eco‐friendliness of the catalyst, simple experimental conditions, short reaction times, high to excellent yields and easy work‐up.  相似文献   

19.
4‐Tolyldiphenylamine (TDPA) and N,N′‐diphenyl‐N,N′‐bis(4‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine (TPD), were reacted with benzaldehyde (BA) using p‐toluenesulfonic acid as a catalyst to yield linear polymers. The polymers were reacted with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) in tetrahydrofuran (THF) at room temperature. 1H‐NMR showed that all the methine protons in the residue of BA were completely removed at the mole ratio of repeating unit : DDQ, 2 : 1. The resulting polymers showed good solubility in chloroform or THF. The reacted TDPA‐BA and TPD‐BA polymers gave new UV absorption peaks at 697.0 and 722.5 nm and showed reversible redox potentials about 0.994 and 1.021 V, respectively. Direct current (d.c.) conductivity of the reacted polymers was in the range of 10?11 S/cm, which is more than two orders higher than the unreacted polymers. The polymer showed pentad split electron spin resonance (ESR) signal, whose concentration was one in 670 or 230 repeating unit for TDPA‐BA and TPD‐BA polymers, respectively. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Four new 3,4‐dihydro‐1‐benzoxepin‐5(2H )‐one derivatives, namely (E )‐4‐(5‐bromo‐2‐hydroxybenzylidene)‐6,8‐dimethoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 7 ), (E )‐4‐[(E )‐3‐(5‐bromo‐2‐hydroxyphenyl)allylidene]‐6,8‐dimethoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 8 ), (E )‐4‐(5‐bromo‐2‐hydroxybenzylidene)‐6‐hydroxy‐8‐methoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, C18H15BrO5, ( 9 ), and (E )‐4‐[(E )‐3‐(5‐bromo‐2‐hydroxyphenyl)allylidene]‐6‐hydroxy‐8‐methoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 10 ), have been synthesized and characterized by FT–IR, NMR and MS. The structure of ( 9 ) was confirmed by single‐crystal X‐ray diffraction. Crystal structure analysis shows that molecules of ( 9 ) are connected into a one‐dimensional chain in the [010] direction through classical hydrogen bonds and these chains are further extended into a three‐dimensional network via C—H…O interactions. The inhibitory activities of these compounds against protein–tyrosine kinases (PTKs) show that 6‐hydroxy‐substituted compounds ( 9 ) and ( 10 ) are more effective for inhibiting ErbB1 and ErbB2 than are 6‐methoxy‐substituted compounds ( 7 ) and ( 8 ). This may be because ( 9 ) and ( 10 ) could effectively bind to the active pockets of the protein through intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号