首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate relativistic adapted Gaussian basis sets (RAGBSs) from H (Z = 1) through Xe (Z = 54) without variational prolapse have been developed by employing a polynomial version of the Generator Coordinate Dirac‐Fock (p‐GCDF) method. Two nuclear models have been used in this work: (1) the finite nucleus of uniform proton‐charge distribution, and (2) the finite nucleus with a Gaussian proton–charge distribution. The largest errors observed are only 1.5 mHartree (silver and cadmium) and the RAGBS sizes are much smaller than previous accurate relativistic Gaussian basis sets that were shown to be free of variational prolapse. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 61–71, 2006  相似文献   

2.
Ab initio accurate all-electron relativistic molecular orbital Dirac–Fock self-consistent field calculations are reported for the linear symmetric XeF2 molecule at various internuclear distances with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF2 at various internuclear distances. The relativistic correction to the electronic energy of XeF2 was calculated as ~ ?215 hartrees (?5850 eV) by using the Dirac–Fock method. The dominant magnetic part of the Breit interaction correction to the nonrelativistic interelectron Coulomb repulsion was included in our calculations by both the Dirac–Fock–Breit self-consistent field and perturbation methods. The calculated Breit correction is ~6.5 hartrees (177 eV) for XeF2. The relativistic Dirac–Fock as well as the nonrelativistic HF wave functions predict XeF2 to be unbound, due to neglect of electron correlation effects. These effects were incorporated for XeF2 by using various ab initio post Hartree–Fock methods. The calculated dissociation energy obtained using the MP 2(full) method with our extensive basis set of 313 primitive Gaussians that included d and f polarization functions on Xe and F is 2.77 eV, whereas the experimental dissociation energy is 2.78 eV. The calculated correlation energy is ~ ?2 hartrees (?54 eV) at the predicted internuclear distance of 1.986 Å, which is in excellent agreement with the experimental Xe—F distance of 1.979 Å in XeF2. In summary, electron correlation effects must be included in accurate ab initio calculations since it has been shown here that their inclusion is crucial for obtaining theoretical dissociation energy (De) close to experimental value for XeF2. Furthermore, relativistic effects have been shown to make an extremely significant contribution to the total energy and orbital binding energies of XeF2. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Ab initio all-electron fully relativistic Dirac–Fock self-consistent field and Dirac–Fock–Breit calculations are reported for the XeF4 molecule at various internuclear distances assuming the experimental D4h geometry with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF4 at various internuclear distances. The calculated relativistic correction to the total energy of molecule at the Dirac–Fock level is ~ ?5856 eV, whereas the magnetic part of the Breit correction to the electron-electron interaction is calculated as ~ 177 eV. The electron correlation effects were included in the nonrelativistic Hartree–Fock calculations using the second-order Møller-Plesset (MP 2) theory, and the calculated correlation energy for XeF4 is ?71 eV. The basis-set superposition error (BSSE ) was estimated by using the counterpoise method for Xe and F. The inclusion of both the relativistic and electron correlation effects in the calculated total energies of F, Xe, and XeF4 predicts the Xe—F bond length and dissociation energy of XeF4 as 1.952 Å and 5.59 eV, respectively, which are in excellent agreement with the experimental values of 1.953 Å and 5.69 eV, respectively, for XeF4. The contribution of the electron correlation and relativistic effects to the dissociation energy of XeF4 is 8.11 and 0.05 eV, respectively. The Breit interaction, however, contributes only 0.02 eV to the dissociation energy of XeF4. Electron correlation is most significant for the prediction of an accurate value of dissociation energy, whereas relativistic effects are very important for the prediction of spin-orbital splitting as well as the energies of the orbitals, especially the inner orbitals of XeF4. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Ab initio averaged relativistic effective core potentials (AREP ), spin-orbit (SO ) operators, and valence basis sets are reported for the elements Fr through Pu in the form of expansions in Gaussian-type functions. Gaussian basis sets with expansion coefficients for the low-energy states of each atom are given. Atomic orbital energies calculated under the jj coupling scheme within the self-consistent field approximation and employing the AREP 'S in their unaveraged form (REP 'S) agree to within 10% of orbital energies due to numerical all-electron Dirac–Fock calculations. The accuracy of the AREP 'S and so operators is also shown to be good through comparisons of calculated so splitting energies with all-electron Dirac–Fock results.  相似文献   

5.
Relativistic basis sets for first-row atoms have been constructed by using the near-Hartree–Fock (nonrelativistic) eigenvectors calculated by Partridge. These bases generate results of near-Dirac–Hartree–Fock quality. Relativistic total and orbital energies, relativistic corrections to the total energy, and magnetic interaction energies for the first-row atoms have been presented. The smallest Gaussian expansions (13s8 p expansions) yield Dirac–Hartree–Fock total energies accurate through six significant digits, while the largest expansions (18s13p expansions) give these energies accurate through seven significant digits. These results are more accurate than some of the results reported earlier, particularly for the open-shell atoms, indicating that the basis employed is reasonably economical for relativistic calculations. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Minimal contracted Gaussian basis sets are presented for Ga through Cd. Characteristically these Gaussian-based minimal sets give far better d orbital energies than those by minimal STO basis sets. These new basis sets were tested on Br2 for which a new benchmark calculation was also performed. The test result is satisfactory in that these basis sets produce good general agreement with the near Hartree–Fock calculation with respect to the molecular spectroscopic constants.  相似文献   

7.
We have applied a discretized version of the generator coordinate Hartree–Fock method to generate adapted Gaussian basis sets for atoms Cs (Z=55) to Lr (Z=103). Our Hartree–Fock total energy results, for all atoms studied, are better than the corresponding Hartree–Fock energy results attained with previous Gaussian basis sets. For the atoms Cs to Lr we have obtained an energy value within the accuracy of 10−4 to 10−3 hartree when compared with the corresponding numerical Hartree–Fock total energy results. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 858–865, 1998  相似文献   

8.
In this paper, the capability of a polynomial‐modified Gaussian model to relate the peak shape of basic analytes, amlodipine, and its impurity A, with the change of chromatographic conditions was tested. For the accurate simulation of real chromatographic peaks the authors proposed the three‐step procedure based on indirect modeling of peak width at 10% of peak height (W0.1), individual values of left‐half width (A) and right‐half width (B), number of theoretical plates (N), and tailing factor (Tf). The values of retention factors corresponding to the peak beginning (kB), peak apex (kA), peak ending (kE), and peak heights (H0) of the analytes were directly modeled. Then, the investigated experimental domain was divided to acquire a grid of appropriate density, which allowed the subsequent calculation of W0.1, A, B, N, and Tf. On the basis of the predicted results for Tf and N, as well as the defined criteria for the simulation the following conditions were selected: 33% acetonitrile/67% aqueous phase (55 mM perchloric acid, pH 2.2) at 40°C column temperature. Perfect agreement between predicted and experimental values was obtained confirming the ability of polynomial modified Gaussian model and three‐step procedure to successfully simulate the real chromatograms in ion‐interaction chromatography.  相似文献   

9.
The optimality of MO basis sets of Gaussian functions, when constructed from AO basis sets optimized for the neutral atom or for atom ions, is investigated. A formal charge parameter Q is defined and used to adjust the AO basis sets to the molecular environment, by virtue of a simple quadratic expression. Calculations on a series of C1 hydrocarbons (CH2, CH3, CH3+, CH3?, CH4) using 3G basis sets indicate considerable variations in the optimum Q value with the molecular species. The proposed method offers a simple alternative technique to a full molecular basis set optimization.  相似文献   

10.
The CO, CO2, CS, CIF, and SO2 molecules were used to test the dependence of supplementary d and f function exponents to changes in bond lengths and bond angles in MO calculations utilizing Gaussian basis sets in Hartree–Fock and Moller–Plesset calculations. Using Dunning–Hay double zeta basis sets, optimizations were performed at internuclear separations from 100–200 pm and beyond. The energy cost of not reoptimizing d function exponents when bonds are stretched or compressed is much smaller for correlated calculations than for those at the Hartree–Fock level and is greatest at the lower end of the range of internuclear distances. The problem is much less serious at all levels when multiple sets of d functions are used. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

12.
13.
The generator coordinate Hartree–Fock (GCHF) method is employed as a criterion for the selection of a 18s12p Gaussian basis for the atoms Na–Ar. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. The extended basis is then contracted to (10s6p) by a standard procedure and in combination with the previously contracted (7s5p) Gaussian basis for the atoms Li–Ne is enriched with polarization functions. This basis is tested for AlF, SiO, PN, BCl, and P2. The properties of interest were HF total energies, MP2 dipolar moments, bond distances, and dissociation energies. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 927–934, 1997  相似文献   

14.
An efficient integral library Libcint was designed to automatically implement general integrals for Gaussian‐type scalar and spinor basis functions. The library is able to evaluate arbitrary integral expressions on top of p, r and σ operators with one‐electron overlap and nuclear attraction, two‐electron Coulomb and Gaunt operators for segmented contracted and/or generated contracted basis in Cartesian, spherical or spinor form. Using a symbolic algebra tool, new integrals are derived and translated to C code programmatically. The generated integrals can be used in various types of molecular properties. To demonstrate the capability of the integral library, we computed the analytical gradients and NMR shielding constants at both nonrelativistic and 4‐component relativistic Hartree–Fock level in this work. Due to the use of kinetically balanced basis and gauge including atomic orbitals, the relativistic analytical gradients and shielding constants requires the integral library to handle the fifth‐order electron repulsion integral derivatives. The generality of the integral library is achieved without losing efficiency. On the modern multi‐CPU platform, Libcint can easily reach the overall throughput being many times of the I/O bandwidth. On a 20‐core node, we are able to achieve an average output 8.3 GB/s for C60 molecule with cc‐pVTZ basis. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The ionization energies of MHP (CH3OOH) and EHP(CH3CH2OOH) nave been determined by Hel photoelectron spectroscopy (PES) measurement and both Gaussian-2 (G2) calculation and Hartree-Fock (HF) method on the basis of Koopmans theorem at 6.311+G^* basis set level for the first time. The assignment and characterization of PE spectra of MHP and EHP were also supported by the G2 and HF calculations. The first ionization energies of MHP and EHP are 9.87 and 9.65 eV, respectively. Higher solubility of EHP in the atmosphere was attributed to their lower ionization energy values.  相似文献   

16.
《Chemphyschem》2003,4(1):32-48
The coupled‐cluster approach, including single and double excitations and perturbative corrections for triple excitations, is capable of predicting molecular electronic energies and enthalpies of formation of small molecules in the gas phase with very high accuracy (specifically, with error bars less than 5 kJ mol?1), provided that the electronic wavefunction is dominated by the Hartree–Fock configuration. This capability is illustrated by calculations on molecules containing O–H and O–F bonds, namely OH, FO, H2O, HOF, and F2O. To achieve this very high accuracy, it is imperative to account for electron‐correlation effects in a quantitative manner, either by using explicitly correlated two‐particle basis functions (R12 functions) or by extrapolating to the limit of a complete basis. Besides taking into account harmonic zero‐point vibrational energies, it is also necessary to account for anharmonic corrections to the zero‐point vibrational energies, to include the core orbitals into the coupled‐cluster calculations, and to account for spin–orbit corrections and scalar relativistic effects. These additional corrections constitute small but significant contributions in the range of 1–4 kJ mol?1 to the enthalpies of formation of the aforementioned molecules. The highly accurate coupled‐cluster results, obtained by employing R12 functions and by including various corrections, are compared with standard Kohn–Sham density‐functional calculations as well as with the Gaussian‐2 and complete‐basis‐set model chemistries.  相似文献   

17.
To optimize the exponent values in protonic and deuteronic Gaussian‐type functions (GTF) by the elimination of translational and rotational motions, we have proposed the new scheme of an analytical gradient formula with respect to the exponent values in the multi‐component molecular orbital scheme, which can take into account the quantum effects of protons and deuterons, under the Hartree‐Fock level of theory. Numerical assessment of H2 and D2 molecules confirms that there is a clear difference between distributions of protonic and deuteronic orbitals following the elimination of translational and rotational motions. In particular, the d‐type GTF in the protonic orbital drastically improves the total energy. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

18.
This investigation is a continuation of a study on the optimality of MO basis sets of Gaussian functions, when constructed from AO basis sets optimized for the neutral atom or for ions. A formal charge parameter Q is used to adjust AO basis sets to the molecular environment, by virtue of a simple quadratic equation. Calculations are performed on a series of seven C2 hydrocarbons (C2H2, C2H4, C2H6, C2H3+ (open), C2H3+ (bridged), C2H5+ (bridged), and C2H4? radical anion). A simple rule is formulated to give approximate values of the charge parameter Q.  相似文献   

19.
The concepts of symmetry-matrix and symmetry-supermatrix introduced in article I [J. Comput. Chem., 10, 957 (1989)] can be generalized to the Dirac-Fock method. By using the semidirect product decomposition of Oh and the linear vector space theory, the irreducible representation basis of Oh for any molecular system (Oh or its subgroups) can be deduced analytically in the nonorthonormal Cartesian Gaussian basis. This method is extended to discuss the double-valued representations of Oh* in the complex Cartesian Gaussian spinor basis. In the double-valued irreducible representation basis of D2*, the matrix of kinetic operator c(OVERLINE)σ(/OVERLINE)·(OVERLINE)p(/OVELINE) in the Dirac-Fock equation can be reduced into a real symmetric and can be grouped into classes under the operations in D3d. Therefore, the symmetry-matrix and symmetry-supermatrix can also be used in the Dirac-Fock method to reduce the storage of two electron integrals and calculations of Fock matrix during iterations by a factor of ca. g2 (g is the order of the molecular symmetry group). In addition, a method to deal with the nonorthonormal space is presented. © 1996 by John Wiley & Sons, Inc.  相似文献   

20.
The performance of STO basis sets for the ab initio estimation of the nonlinear electromagnetic response properties of molecules, in terms of a time-dependent Hartree–Fock procedure, is investigated. Applications to the case of the first dynamic hyperpolarizability of three simple polyatomics (H2O, CH4, NH3) adopting several extended basis sets are reported and discussed. Independent estimates for the observables investigated obtained by the same approach in terms of Gaussian basis sets are confronted with our findings in the search for recipes of possible utility.Acknowledgements This research has been partially supported by funds provided by the Italian Consiglio Nazionale delle Ricerche (contribution n. CTB 00.00650.PF34) and Pisa University (fondi di Ateneo, ex 60%, years 2001–2002).Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号