首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A promising electrochemical nitrite sensor was fabricated by immobilizing Au@Fe3O4 nanoparticles on the surface of L ‐cysteine modified glassy carbon electrode, which was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The proposed sensor exhibited excellent electrocatalytic activity toward nitrite oxidation. The kinetic parameters of the electrode reaction process were calculated, (1–α)nα was 0.38 and the heterogeneous electron transfer coefficient (k) was 0.13 cm s?1. The detection conditions such as supporting electrolyte and pH value were optimized. Under the optimized conditions, the linear range for the determination of nitrite was 3.6×10?6 to 1.0×10?2 M with a detection limit of 8.2×10?7 M (S/N=3). Moreover, the as‐prepared electrode displayed good stability, repeatability and selectivity for promising practical applications.  相似文献   

2.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   

3.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

4.
In this study, a carbon paste electrode modified with (E)‐2‐((2‐chlorophenylimino)methyl)benzene‐1,4‐diol (CD) and titanium dioxide nanoparticles (TiO2) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of isoproterenol (IP) in the presence of acetaminophen (AC) and folic acid (FA). Initially, cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. In the following, the mediated oxidation of IP at the modified electrode was described. The results showed an efficient catalytic activity of the electrode for the electrooxidation of IP, which leads to a reduction in its overpotential by more than 235 mV. The value of the electron transfer coefficient (α), catalytic rate constant (kh) and diffusion coefficient (D) were calculated for IP, using electrochemical approaches. Based on differential pulse voltammetry (DPV), the oxidation of IP exhibited a dynamic range between 0.5 and 1000 µM and a detection limit (3σ) of 0.47 µM. DPV was used for simultaneous determination of IP, AC and FA at the modified electrode. Finally, this method was used for the determination of IP in real samples, using standard addition method.  相似文献   

5.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

6.
In this work, GC electrodes modified with thick electrospun nanofibrous Nafion webs were characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV) and used for the extraction and electrochemical detection of cadmium by differential pulse voltammetry. Cadmium was detected after 10 min incubation at open circuit followed by anodic stripping using 60 s reduction at ?1.4 V. The electrode yielded well‐defined, undistorted and reproducible (RSD of 7.0 % based on 10 measurements) voltammetric response with two linear ranges from 0.1 to 3 µM (R2=0.994 ) and from 3 to 10 µM (R2=0.977) and a detection limit and sensitivity of 0.01 µM and 32 and 7.725 µA/µM for both linear portions of the curve respectively.  相似文献   

7.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

8.
In this study, the electrochemical reduction of nitrite was investigated on poly(4‐aminoacetanilide) (PPAA) forming by cyclic voltammetry at the surface of carbon paste electrode. The electrochemical properties of the modified electrode have been studied by cyclic voltammetry and double potential step chronoamperometry. Results showed that in the optimum condition (pH = 0.00) the reduction of nitrite occurred at a potential about 667 mV more positive than that unmodified carbon paste electrode. This amount of electrocatalytic ability is high compared with other electrocatalysts. Using a chronoamperometric method, the catalytic rate constant (k) was calculated 8.4 × 104 cm3 mol‐1 s‐1. Also, the electrocatalytic reduction peak currents was found to be linear with the nitrite concentration in the ranges of 5 × 10‐4 M to 2.5 × 10‐2 M and 2 × 10‐5 M to 7 × 10‐3 M with detection limits (2σ) were determined as 4.5 × 10‐4 M and 1 × 10‐5 M by cyclic voltammetry (CV) and hydrodynamic amperometry methods respectively. Recovery experiments exhibit the satisfactory results.  相似文献   

9.
LI Jing 《中国化学》2009,27(12):2373-2378
A novel chemically modified electrode based on the dispersion of gold nanoparticles on polypyrrole nanowires has been developed to investigate the oxidation behavior of nitrite using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. The diffusion coefficient (D), electron transfer coefficient (α) and charge transfer rate constant (k) for the oxidation of nitrite were determined. The modified electrode exhibited high electrocatalytic activity toward the oxidation of nitrite. The catalytic peak current was found to be linear with nitrite concentrations in the range of 8.0×10?7?2.5×10?3 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 (s/n=3). The proposed method was successfully applied to the detection of nitrite in water samples with obtained satisfactory results. Additionally, the sensor also showed excellent sensitivity, anti‐interference ability, reproducibility and stability properties.  相似文献   

10.
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenedicarboxylic acid modified carbon paste electrode (FDCMCPE) in aqueous media using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry. It has been found that under optimum condition (pH 8.00) in cyclic voltammetry, the oxidation of L ‐cysteine occurs at a potential about 200 mV less positive than that of an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear analytical curves were obtained in the ranges of 3.0×10?5 M–2.2×10?3 M and 1.5×10?5 M–3.2×10?3 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 2.6×10?5 M and 1.4×10?6 M by CV and DPV methods.  相似文献   

11.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

12.
In this paper NiMoO4 nanorods were synthesized and used to accelerate the direct electron transfer of hemoglobin (Hb). By using an ionic liquid (IL) 1‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) as the basic electrode, NiMoO4 nanorods and Hb composite biomaterial was further cast on the surface of CILE and fixed by chitosan (CTS) to establish a modified electrode denoted as CTS/NiMoO4‐Hb/CILE. UV‐vis and FT‐IR spectroscopic results showed that Hb in the film retained its native structures without any conformational changes. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with a pair of well‐defined and quasi‐reversible redox voltammetric peaks appearing in phosphate buffer solution (PBS, pH 3.0), which was attributed to the direct electrochemistry of the electroactive center of Hb heme Fe(III)/Fe(II). The results were ascribed to the specific characteristic of NiMoO4 nanorods, which accelerated the direct electron transfer rate of Hb with the underlying CILE. The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron transfer number (n) as 1.08, the charge transfer coefficient (α) as 0.39 and the electron‐transfer rate constant (ks) as 0.82 s?1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA) in the concentration range from 0.2 to 26.0 mmol/L with a detection limit of 0.072 mmol/L (3σ), and H2O2 in the concentration range from 0.1 to 426.0 µmol/L with a detection limit of 3.16×10?8 mol/L (3σ).  相似文献   

13.
《Analytical letters》2012,45(15):2832-2843
Abstract

This work demonstrates the electrochemical behavior of the 1-phenyl-3-methyl-4-(α-furoyl)-pyrazolone-5 (HPMαFP) modified glassy carbon electrode (HPMαFP/GCE) by a dropletting method. Tyrosine (Tyr) was detected at the HPMαFP/GCE by cyclic voltammetry. The mechanism and the best condition of electrode reaction were studied. The results indicate Tyr has an excellent electrochemical response at HPMαFP/GCE; under optimized experimental conditions, the peak current is proportional to the concentration of Tyr over a wide range. The linear regression equation at HPMαFP/GCE is IPa (µA) = 1.01134 + 0.96716 C (µmol · L?1) (r = 0.99914). The low detection limit is 1.6 × 10?7 mol · L?1. The modified electrode exhibited high sensitivity, good selectivity, and reproducibility, and it is easy to prepare.  相似文献   

14.
The electrocatalytic reduction of nitrite has been studied by poly(ortho‐toluidine) films modified carbon paste electrode (P‐OT/MCPE). Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of poly(ortho‐toluidine) as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the reduction of nitrite occurs at a potential about 600 mV more positive than unmodified carbon paste electrode. The catalytic reaction rate constant, (kh), was calculated 8.68×102 M?1 s?1 by the data of chronoamperometry. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00×10?4 M–1.90×10?2 M. Detection limit has been found to be 3.38×10?4 M (2σ). This method has been successfully employed for quantification of nitrite in real sample.  相似文献   

15.
A new boron doped diamond microcells (BDD) was modified, for rapid, selective and highly sensitive determination of nitrite, using a coating film of polyoxometalates (POMs), formed by cyclic voltammetry on the molecular p‐phenylenediamine (PPD) functionalized BDD. The scanning electron microscopy (SEM) technique was used to examine the morphology of (PPD/SiW11) modified (BDD) electrode. It was found that (SiW11) layer was uniformly formed on the electrode surface. It was observed that (BDD/PPD/SiW11) showed excellent electrocatalytic activities towards nitrite ion. Under the selected conditions, the anodic peak maximum at ?0.6 V was linear versus nitrite concentration in the 40 µM–4 mM range, and the detection limit obtained was 20 µM. The newly developed electrode has been successfully applied to the determination of nitrite content in real river water samples.  相似文献   

16.
The electrochemical behavior of oxadiargyl at a graphene‐paste electrode modified with an azo dye, 2‐(4‐((4‐acetylphenyl)diazenyl)phenylamino)ethanol (ADPE), ADPE/MGRPE was investigated. The modified electrode showed high electrocatalytic activity toward oxadiargyl. The apparent electron transfer rate constant (ks) and charge transfer coefficient (α) between electrode and ADPE were 1.16 s?1 and 0.41, respectively. The differential pulse voltammetry response of the modified graphene‐paste electrode was linear against the concentration of oxadiargyl in the range from 0.03 to 1.4 mg L?1. The limit of detection was found to be 1.3 µg L?1 (S/N=3). The practical analytical utility of this electrode was demonstrated by measurement of oxadiargyl in river water, soil and rice samples.  相似文献   

17.
Diphenylamine (DPA) monomers have been electropolymerized on the amino‐functionalized multiwalled carbon nanotube (AFCNT) composite film modified glassy carbon electrode (GCE) by cyclic voltammetry (CV). The surface morphology of PDPA‐AFCNT was studied using field‐emission scanning electron microscopy (FE‐SEM). The interfacial electron transfer phenomenon at the modified electrode was studied using electrochemical impedance spectroscopy (EIS). The PDPA‐AFCNT/GCE represented a multifunctional sensor and showed good electrocatalytic behavior towards the oxidation of catechol and the reduction of hydrogen peroxide. Rotating‐disk electrode technique was applied to detect catechol with a sensitivity of 1360 µA mM?1 cm?2 and a detection limit of 0.01 mM. Amperometric determination of hydrogen peroxide at the PDPA‐AFCNT film modified electrode results in a linear range from 10 to 800 µM, a sensitivity of 487.1 µA mM?1 cm?2 and detection limit of 1 µM. These results show that the nano‐composite film modified electrode can be utilized to develop a multifunctional sensor.  相似文献   

18.
In the present paper simultaneous determination of nitrite and hydrogen peroxide using hemoglobin modified pencil lead electrode (Hb/PLE) prepared by a simple and rapid electroless method was described. In the first part of the work the reduction of NO2 and H2O2 at the modified electrode was investigated by cyclic voltammetry. Then under optimal conditions using differential pulse voltammetry, the biosensor could be used for the determination of H2O2 at concentration ranging from 5 to 240 M and NO2 at concentration ranging from 10 to 240 M. The detection limits were 3×10?6 and 5×10?6 M, for NO2 and H2O2 respectively. Differential pulse voltammetry also used for the simultaneous determination of NO2 and H2O2. This modified electrode successfully used for the determination of NO2 and H2O2 in tap water and mother’s milk samples.  相似文献   

19.
This study reports on the synthesis, characterization, and performance of a new dinuclear cobalt(III) thioxanthate complex of [Co2(μ-SC2H4OH)2(HOC2H4SCS2)4] as an electrocatalyst for trichloroacetic acid (TCA) and bromate reduction. Its structure was characterized by X-ray crystallography and elemental analysis. The structure contains two different anions of 2-sulfanylethanol thioxanthate and 2-sulfanylethanol. The electrochemical behavior and the electrocatalysis of the cobalt complex bulk-modified carbon paste electrode have been studied by cyclic voltammetry. It shows good electrocatalytic activities toward the reduction of TCA and bromate. The values for the detection limit and the sensitivity are 0.06 µmol L?1 and 19.40 µA µmol L?1 for TCA detection and 0.01 µmol L?1 and 177.6 µA µmol L?1 for bromate detection, respectively. This modified electrode exhibits good reproducibility, high stability, low detection limit and technical simplicity, and allows a possibility for rapid preparation, which is important for practical applications.  相似文献   

20.
《Analytical letters》2012,45(6):912-922
An amine-Fe3O4 modified glassy carbon (GC) electrode was constructed for detecting Pb(II) ions in wastewater. The electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) was used to detect the Pb(II), and the detection limit of Pb(II) was 0.15 µM. The sensitivity of the electrode to detect Pb(II) was about 10.07 µA/µM, with a correlation coefficient of 0.991, which was approximately 10 times bigger than that of a pure Fe3O4 modified electrode. The electrode also showed good selectivity and stability. This results indicated that the amine-magnetite material could have some potential applications in heavy metal ions detection in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号