首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we propose a reformulation of the fluxes and interpolation calculations in the PISO method, a well‐known pressure‐correction solver. This new reformulation introduces the AUSM+ ? up flux definition as a replacement for the standard Rhie and Chow method of obtaining fluxes and central interpolation of pressure at the control volume faces. This algorithm tries to compatibilize the good efficiency of a pressure based method for low Mach number applications with the advantages of AUSM+ ? up at high Mach number flows. The algorithm is carefully validated using exact solutions. Results for subsonic, transonic and supersonic axisymmetric flows in a nozzle are presented and compared with exact analytical solutions. Further, we also present and discuss subsonic, transonic and supersonic results for the well known bump test‐case. The code is also benchmarked against a very tough test‐case for the supersonic and hypersonic flow over a cylinder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A recently developed asymmetric implicit fifth‐order scheme with acoustic upwinding for the spatial discretization for the characteristic waves is applied to the fully compressible, viscous and non‐stationary Navier–Stokes equations for sub‐ and super‐sonic, mildly turbulent, channel flow (Reτ=360). For a Mach number of 0.1, results are presented for uniform (323, 643 and 1283) and non‐uniform (expanding wall‐normal, 323 and 643) grids and compared to the (incompressible) reference solution found in (J. Fluid. Mech. 1987; 177 :133–166). The results for uniform grids on 1283 and 643 nodes show high resemblance with the reference solution. Expanding grids are applied on 643‐ and 323‐node grids. The capability of the proposed technique to solve compressible flow is first demonstrated by increasing the Mach number to 0.3, 0.6 and 0.9 for isentropic flow on the uniform 643‐grid. Next, the flow speed is increased to Ma=2. The results for the isothermal‐wall supersonic flows give very good agreement with known literature results. The velocity field, the temperature and their fluctuations are well resolved. This means that in all presented (sub‐ and super‐sonic) cases, the combination of acoustic upwinding and the asymmetric high‐order scheme provides sufficient high wave‐number damping and low wave‐number accuracy to give numerically stable and accurate results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Force and pressure measurements were performed in a high Reynolds number facility, i.e. the Cryogenic Ludwieg-Tube (KRG). The balance based on multicomponent piezoelectric force transducers was applied totally in the cryogenic environment. The behaviour of the balance was tested ranging from ambient down to cryogenic conditions. As test cases, the flow around a circular cylinder was investigated at a sub- and supercritical Mach number. The highest possible Reynolds number in most nearly incompressible flow (Re = 5.8 × 106) was achieved at the temperature of T = −150°C, the highest pressure possible, p 0 = 10 bar, and the lowest attainable Mach number of Ma = 0.28. The results show that, in spite of the pulse operating mode of the tunnel, the steady and unsteady processes can be measured very well by means of a piezoelectric balance.  相似文献   

4.
At low Mach numbers, Godunov‐type approaches, based on the method of lines, suffer from an accuracy problem. This paper shows the importance of using the low Mach number correction in Godunov‐type methods for simulations involving low Mach numbers by utilising a new, well‐posed, two‐dimensional, two‐mode Kelvin–Helmholtz test case. Four independent codes have been used, enabling the examination of several numerical schemes. The second‐order and fifth‐order accurate Godunov‐type methods show that the vortex‐pairing process can be captured on a low resolution with the low Mach number correction applied down to 0.002. The results are compared without the low Mach number correction and also three other methods, a Lagrange‐remap method, a fifth‐order accurate in space and time finite difference type method based on the wave propagation algorithm, and fifth‐order spatial and third‐order temporal accurate finite volume Monotone Upwind Scheme for Conservation Laws (MUSCL) approach based on the Godunov method and Simple Low Dissipation Advection Upstream Splitting Method (SLAU) numerical flux with low Mach capture property. The ability of the compressible flow solver of the commercial software, ANSYS FLUENT , in solving low Mach flows is also demonstrated for the two time‐stepping methods provided in the compressible flow solver, implicit and explicit. Results demonstrate clearly that a low Mach correction is required for all algorithms except the Lagrange‐remap approach, where dissipation is independent of Mach number. © 2013 Crown copyright. International Journal for Numerical Methods in Fluids. © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An investigation is made into the influence of the Mach number and the viscosity on the flow in the neighborhood of the trailing edge of a plate. The Mach number is assumed to satisfy m 2 ? 1 = 0(R?l/5), which corresponds to the regime of transonic interaction. It is shown that if the Mach number is such that ¦M 2 ? 1¦ > O(R?1/5) the problem in the region of free interaction can be reduced by an appropriate transformation to the already known solutions for an incompressible fluid [5] and supersonic flow [7].  相似文献   

6.
Supersonic off-design flow past waveriders on the M = 3 to 10 freestream Mach number range is numerically investigated. Configurations based on the flows behind plane shocks followed by isentropic flow compression are considered. The flow regimes are analyzed at the Mach numbers both smaller and greater than the design value M d . The results are obtained by finite-volume solution of the Euler equations using higher-order Runge-Kutta TVD schemes.  相似文献   

7.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The unsteady compressible flow equations are solved using a stabilized finite‐element formulation with C0 elements. In 2D, the performance of three‐noded linear and six‐noded quadratic triangular elements is compared. In 3D, the relative performance is evaluated for 6‐noded linear and 18‐noded quadratic wedge elements. Results are compared for the solutions to Euler, laminar, and turbulent flows at different Mach numbers for several flow problems. The finite‐element meshes considered for comparison have same location of nodes for the linear and quadratic interpolations. For the turbulent flow, the Spalart–Allmaras model is used for closure. It is found that the quadratic elements yield better performance than the linear elements. This is attributed to accurate representation of the stabilization terms that involve second‐order derivatives in the formulation. When these terms are dropped from the formulation with quadratic interpolation, the numerical results are similar to those obtained with linear interpolation. The absence of these terms result in added numerical diffusion that seems to give the effect of a relatively reduced Reynolds number. For the same location of nodes, the computations with the linear triangular and wedge elements are approximately 20% and 100% faster than those with quadratic triangular and wedge elements, respectively. However, if the same quadrature rule for numerical integration is used for both interpolations, the computations with quadratic elements are approximately 20% and 45% faster in 2D and 3D, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Gas Kinetic Method‐based flow solvers have become popular in recent years owing to their robustness in simulating high Mach number compressible flows. We evaluate the performance of the newly developed analytical gas kinetic method (AGKM) by Xuan et al. in performing direct numerical simulation of canonical compressible turbulent flow on graphical processing unit (GPU)s. We find that for a range of turbulent Mach numbers, AGKM results shows excellent agreement with high order accurate results obtained with traditional Navier–Stokes solvers in terms of key turbulence statistics. Further, AGKM is found to be more efficient as compared with the traditional gas kinetic method for GPU implementation. We present a brief overview of the optimizations performed on NVIDIA K20 GPU and show that GPU optimizations boost the speedup up‐to 40x as compared with single core CPU computations. Hence, AGKM can be used as an efficient method for performing fast and accurate direct numerical simulations of compressible turbulent flows on simple GPU‐based workstations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The hypersonic Mach number independence principle of Oswatitsch is important for hypersonic vehicle design. It explains why, above a certain flight Mach number (M ≈ 4−6, depending on the body shape), some aerodynamic properties become independent of the flight Mach number. For ground test facilities this means that it is sufficient for the Mach number in the test section to be high enough, that Mach number independence exists. However, the principle was derived for calorically perfect gas and inviscid flow only. In this paper a theoretical study for blunt bodies in the case of viscous flow is presented. We provide numerical results which give insight into how attached viscous flow behaves at high Mach numbers. The flow past an axisymmetric configuration is analysed by applying a coupled Euler/second-order boundary-layer method. Wall boundaries are treated by assuming an adiabatic or radiation-adiabatic wall for laminar flow. Calorically perfect or equilibrium air is accounted for. Lift, drag, and moment coefficients, and lift-to-drag ratios are given for several combinations of flight Mach number and altitude, i.e. Reynolds number. For blunt bodies considered here, which are pressure dominated, Mach number independence occurs for the adiabatic wall, but not for the radiation-adiabatic wall assumption.  相似文献   

12.
The results are given of an experimental investigation of the flow in the initial section of a turbulent underexpanded jet exhausting from a profiled nozzle with Mach number M a = 2.56 at the exit into a parallel stream with Mach number M = 3.1. Analysis of the results of measurement of the fields of the total head p0 and the stagnation temperature T0 in conjunction with results of calculation of a jet of an ideal gas make it possible to construct the velocity profile in the mixing layer of the underexpanded jet in the parallel supersonic flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–163, January–February, 1981.  相似文献   

13.
A novel Mach‐uniform method to compute flows using unstructured staggered grids is discussed. The Mach‐uniform method is a generalization of the pressure‐correction approach for incompressible flows, and is valid for Mach numbers ranging from 0 (incompressible) to > 1 (supersonic). The primary variables (ρ u ,p and ρ) are updated sequentially. The grid consists of triangles. A staggered positioning of the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the normal momentum components are positioned at the midpoints of the faces of the triangles. Discretization of the two‐dimensional flow equations on unstructured staggered grids is discussed. For the cell face fluxes there is a choice between first‐order upwind and central approximation. Flows around the NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate the Mach‐uniform accuracy and efficiency of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
2nd-order upwind TVD scheme was used to solve the laminar, fully Navier-Stokes equations. The numerical simulations were done on the propagation of a shock wave with Ma S = 2 and 4 into a hydrogen and air mixture in a duct and a duct with a rearward step. The results indicate that a swirling vortex may be generated in the lopsided interface behind the moving shock. Meanwhile, the complex shock system is also formed in this shear flow region. A large swirling vortex is produced and the fuel mixing can be enhanced by a shock wave at low Mach number. But in a duct with a rearward step, the shock almost disappears in hydrogen for Ma S = 2. The shock in hydrogen will become strong if Ma S is large. Similar to the condition of a shock moving in a duct full of hydrogen and air, a large vortex can be formed in the shear flow region. The large swirling vortex even gets through the reflected shock and impacts on the lower wall. Then, the distribution of hydrogen behind the rearward step is divided into two regions. The transition from regular reflection to Mach reflection was observed as well in case Ma S = 4.  相似文献   

15.
Laminar stagnation flow, axisymmetrically yet obliquely impinging on a moving circular cylinder, is formulated as an exact solution of the Navier–Stokes equations. Axial velocity is time‐dependent, whereas the surface transpiration is uniform and steady. The impinging free stream is steady with a strain rate k?. The governing parameters are the stagnation‐flow Reynolds number Re=k?a2/2ν, and the dimensionless transpiration S=U0/k?a. An exact solution is obtained by reducing the Navier–Stokes equations to a system of differential equations governed by Reynolds number and the dimensionless wall transpiration rate, S. The system of Boundary Value Problems is then solved by the shooting method and by deploying a finite difference scheme as a semi‐similar solution. The results are presented for velocity similarity functions, axial shear stress and stream functions for a variety of cases. Shear stresses in all cases increase with the increase in Reynolds number and suction rate. The effect of different parameters on the deflection of viscous stagnation circle is also determined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, pressure‐based and density‐based methods are studied at different flow speeds. The methods are intended for steady flows, and the goal is to find as general an approach as possible to cover different Mach number regimes. The solution methods are based on a finite‐volume approach. Various forms of inviscid fluxes are applied and connected with either a pressure‐based or density‐based implicit solution. For this purpose, a new pressure‐correction method is developed that can be applied for incompressible and for compressible flows. Another option is a standard density‐based approximate factorization method. In both cases, a convergence is accelerated with a Full Approximation Scheme (FAS) multigrid approach. Sample problems in the range of Ma = 0…6 are simulated using different approaches, and their efficiency and accuracy are compared. On the basis of the quality of the solutions, recommendations are made. © 2015 The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons Ltd.  相似文献   

17.
Numerical calculations of the 2‐D steady incompressible driven cavity flow are presented. The Navier–Stokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity flow solutions are computed for Re ? 21 000 with a maximum absolute residuals of the governing equations that were less than 10?10. A new quaternary vortex at the bottom left corner and a new tertiary vortex at the top left corner of the cavity are observed in the flow field as the Reynolds number increases. Detailed results are presented and comparisons are made with benchmark solutions found in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Supersonic flight of aerospace planes is of marked interest since several flow regimes characterized by different local flow structures have to be flown through. This problem was investigated experimentally for the hypersonic research configuration ELAC 1. The aim of the study was to detect the influence of the rounded leading edge, of the thickness distribution prescribed, and of the Reynolds number, especially on the flow on the leeward side of the configuration. The experiments were carried out in the transonic wind tunnel of Aerodynamisches Institut of RWTH Aachen, at a freestream Mach number Ma =2, a unit Reynolds number of Re =13×106, angles of attack between ?3°?α?10°, and in a wind tunnel of the Institute for Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The freestream Mach numbers covered in these experiments were varied between 2?Ma ?4, freestream Reynolds numbers per unit length between 25×106?Re ?56×106 and angles of attack between ?3°?α?10°. Flow visualization studies, measurements of surface pressure distributions and of aerodynamic forces were used to analyze the flow. The results, which will also be compared with numerical data, clearly indicate marked differences in the location of the separation and reattachment lines, and the formation of the primary, secondary and tertiary vortices, for the flow regimes investigated.  相似文献   

19.
We consider the magnetohydrodynamic flow that is laminar and steady of a viscous, incompressible, and electrically conducting fluid in a semi‐infinite duct under an externally applied magnetic field. The flow is driven by the current produced by a pressure gradient. The applied magnetic field is perpendicular to the semi‐infinite walls that are kept at the same magnetic field value in magnitude but opposite in sign. The wall that connects the two semi‐infinite walls is partly non‐conducting and partly conducting (in the middle). A BEM solution was obtained using a fundamental solution that enables to treat the magnetohydrodynamic equations in coupled form with general wall conductivities. The inhomogeneity in the equations due to the pressure gradient was tackled, obtaining a particular solution, and the BEM was applied with a fundamental solution of coupled homogeneous convection–diffusion type partial differential equations. Constant elements were used for the discretization of the boundaries (y = 0, ?a ? x ? a) and semi‐infinite walls at x = ±a, by keeping them as finite since the boundary integral equations are restricted to these boundaries due to the regularity conditions as y → ∞ . The solution is presented in terms of equivelocity and induced magnetic field contours for several values of Hartmann number (M), conducting length (l), and non‐conducting wall conditions (k). The effect of the parameters on the solution is studied. Flow rates are also calculated for these values of parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号