首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the external validation data sets with the highest space coverage as compared to individual constituent models. Our studies prove the power of a collaborative and consensual approach to QSAR model development. The best validated models of aquatic toxicity developed by our collaboratory (both individual and consensus) can be used as reliable computational predictors of aquatic toxicity and are available from any of the participating laboratories.  相似文献   

3.
A new computer program has been designed to build and analyze quantitative-structure activity relationship (QSAR) models through regression analysis. The user is provided with a range of regression and validation techniques. The emphasis of the program lies mainly in the validation of QSAR models in chemical applications. ARTE-QSAR produces an easy interpretable output from which the user can conclude if the obtained model is suitable for prediction and analysis.  相似文献   

4.
Datasets of molecular compounds often contain outliers, that is, compounds which are different from the rest of the dataset. Outliers, while often interesting may affect data interpretation, model generation, and decisions making, and therefore, should be removed from the dataset prior to modeling efforts. Here, we describe a new method for the iterative identification and removal of outliers based on a k‐nearest neighbors optimization algorithm. We demonstrate for three different datasets that the removal of outliers using the new algorithm provides filtered datasets which are better than those provided by four alternative outlier removal procedures as well as by random compound removal in two important aspects: (1) they better maintain the diversity of the parent datasets; (2) they give rise to quantitative structure activity relationship (QSAR) models with much better prediction statistics. The new algorithm is, therefore, suitable for the pretreatment of datasets prior to QSAR modeling. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
In the quantitative structure‐activity relationship (QSAR) study, local lazy regression (LLR) can predict the activity of a query molecule by using the information of its local neighborhood without need to produce QSAR models a priori. When a prediction is required for a query compound, a set of local models including different number of nearest neighbors are identified. The leave‐one‐out cross‐validation (LOO‐CV) procedure is usually used to assess the prediction ability of each model, and the model giving the lowest LOO‐CV error or highest LOO‐CV correlation coefficient is chosen as the best model. However, it has been proved that the good statistical value from LOO cross‐validation appears to be the necessary, but not the sufficient condition for the model to have a high predictive power. In this work, a new strategy is proposed to improve the predictive ability of LLR models and to access the accuracy of a query prediction. The bandwidth of k neighbor value for LLR is optimized by considering the predictive ability of local models using an external validation set. This approach was applied to the QSAR study of a series of thienopyrimidinone antagonists of melanin‐concentrating hormone receptor 1. The obtained results from the new strategy shows evident improvement compared with the commonly used LOO‐CV LLR methods and the traditional global linear model. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
7.
8.
9.
10.
11.
Quantitative Structure–Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors (kNN) variable selection QSAR method for the analysis of several datasets, we have demonstrated recently that the widely accepted leave-one-out (LOO) cross-validated R2 (q2) is an inadequate characteristic to assess the predictive ability of the models [Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Mod. 20, 269-276, (2002)]. Herein, we provide additional evidence that there exists no correlation between the values of q 2 for the training set and accuracy of prediction (R 2) for the test set and argue that this observation is a general property of any QSAR model developed with LOO cross-validation. We suggest that external validation using rationally selected training and test sets provides a means to establish a reliable QSAR model. We propose several approaches to the division of experimental datasets into training and test sets and apply them in QSAR studies of 48 functionalized amino acid anticonvulsants and a series of 157 epipodophyllotoxin derivatives with antitumor activity. We formulate a set of general criteria for the evaluation of predictive power of QSAR models.  相似文献   

12.
13.
14.
15.
16.
The main utility of QSAR models is their ability to predict activities/properties for new chemicals, and this external prediction ability is evaluated by means of various validation criteria. As a measure for such evaluation the OECD guidelines have proposed the predictive squared correlation coefficient Q(2)(F1) (Shi et al.). However, other validation criteria have been proposed by other authors: the Golbraikh-Tropsha method, r(2)(m) (Roy), Q(2)(F2) (Schu?u?rmann et al.), Q(2)(F3) (Consonni et al.). In QSAR studies these measures are usually in accordance, though this is not always the case, thus doubts can arise when contradictory results are obtained. It is likely that none of the aforementioned criteria is the best in every situation, so a comparative study using simulated data sets is proposed here, using threshold values suggested by the proponents or those widely used in QSAR modeling. In addition, a different and simple external validation measure, the concordance correlation coefficient (CCC), is proposed and compared with other criteria. Huge data sets were used to study the general behavior of validation measures, and the concordance correlation coefficient was shown to be the most restrictive. On using simulated data sets of a more realistic size, it was found that CCC was broadly in agreement, about 96% of the time, with other validation measures in accepting models as predictive, and in almost all the examples it was the most precautionary. The proposed concordance correlation coefficient also works well on real data sets, where it seems to be more stable, and helps in making decisions when the validation measures are in conflict. Since it is conceptually simple, and given its stability and restrictiveness, we propose the concordance correlation coefficient as a complementary, or alternative, more prudent measure of a QSAR model to be externally predictive.  相似文献   

17.
The predictive accuracy of the model is of the most concern for computational chemists in quantitative structure-activity relationship (QSAR) investigations. It is hypothesized that the model based on analogical chemicals will exhibit better predictive performance than that derived from diverse compounds. This paper develops a novel scheme called "clustering first, and then modeling" to build local QSAR models for the subsets resulted from clustering of the training set according to structural similarity. For validation and prediction, the validation set and test set were first classified into the corresponding subsets just as those of the training set, and then the prediction was performed by the relevant local model for each subset. This approach was validated on two independent data sets by local modeling and prediction of the baseline toxicity for the fathead minnow. In this process, hierarchical clustering was employed for cluster analysis, k-nearest neighbor for classification, and partial least squares for the model generation. The statistical results indicated that the predictive performances of the local models based on the subsets were much superior to those of the global model based on the whole training set, which was consistent with the hypothesis. This approach proposed here is promising for extension to QSAR modeling for various physicochemical properties, biological activities, and toxicities.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号