首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectrometry. A three‐dimensional porous coating was formed with carbon nanoparticles. In combination with high‐performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor‐by‐factor optimization method. The established method exhibited good linearity (0.01–10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2–106% and 93.4–108%, respectively. The results indicated that the carbon nanoparticle‐coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons.  相似文献   

2.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

3.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

4.
This report describes the use of surfactant‐coated graphitized multiwalled carbon nanotubes (SC‐GMWNTs) as a novel pseudostationary phase in CE with diode array detection for the determination of phenolic acids and tanshinones in herbal and urine samples. Several parameters influencing the separation were studied, such as the concentrations of SDS, GMWNTs, and isopropanol; choice of carbon nanotubes; sodium borate content; and buffer pH. The results revealed that the presence of SC‐GMWNTs in buffer enhanced the separation efficiency for the target analytes relative to conventional micelles due to the strong interaction between the surface of the GMWNTs and the target compounds. Under the optimum conditions, the method showed good linearity, with correlation coefficients higher than 0.9950. LODs were in the range of 0.71–3.10 μg/mL. Furthermore, satisfactory separations were achieved with good recovery values in the range of 89.97 and 103.30% when 10 mM borate, 30 mM SDS, 10% isopropanol, and 6 μg/mL SC‐GMWNTs were introduced into the buffer solution.  相似文献   

5.
A simple sample pretreatment device was developed employing extractions across supported liquid membranes (SLMs) and in‐line coupling to a commercial CE instrument. The device consisted of two polypropylene conical units interspaced with a polypropylene planar SLM, which were impregnated with 1‐ethyl‐2‐nitrobenzene. The two units and the SLM were pressed against each other, donor unit was filled with 40 μL of an untreated body fluid and acceptor unit with 40 μL of DI water. The device was then placed into conventional CE vial fitted with a soft spring, which was depressed during injection into CE capillary and ensured that the SLM was not ruptured. Position of separation capillary injection end and high‐voltage electrode in the CE instrument was optimized in order to ensure efficient injection of pretreated body fluids. The device can be easily assembled/disassembled and SLMs can be replaced after each extraction thus minimizing sample carry‐over, avoiding tedious SLM regeneration, and reducing total pretreatment time and costs. The pretreatment device was examined by direct injection of human urine and serum spiked with nortriptyline, haloperidol, and loperamide. The basic drugs were diffusionaly transported across the SLM within 10 min and were injected into the separation capillary directly from the SLM surface in the acceptor unit, whereas matrix components were retained by the SLM. The in‐line SLM‐CE method showed good repeatability of peak areas (3.8–11.0%) and migration times (below 1.4%), linear relationship (r2 = 0.990–0.999), and low LODs (12–100 μg/L).  相似文献   

6.
A simple in‐line single drop liquid–liquid–liquid microextraction (SD‐LLLME) coupled with CE for the determination of two fluoroquinolones was developed. The method is capable to quantify trace amount of analytes in water samples and to improve the sensitivity of CE detection. For the SD‐LLLME, a thin layer of organic phase was used to separate a drop of 0.1 M NaOH hanging at the inlet of the capillary from the aqueous donor phase. By this way, the analytes were extracted to the acceptor phase through the organic layer based on their acidic/basic dissociation equilibrium. The drop was immersed into the organic phase during 10 min for extraction and then it is directly injected into the capillary for the analysis. Parameters such as type and volume of organic solvent phase, aqueous donor, and acceptor phases and extraction time and temperature were optimized. The enrichment factor was calculated, resulting 40‐fold for enrofloxacin (ENR) and sixfold for ciprofloxacin (CIP). The linear range were 20–400 μg/L for ENR and 60–400 μg/L for CIP. The detection limits were 10.1 μg/L and 55.3 μg/L for ENR and CIP, respectively, and a good reproducibility was obtained (4.4% for ENR and 5.6% for CIP). Two real water samples were analysed applying the new method and the obtained results presented satisfactory recovery percentages (90–100.3%).  相似文献   

7.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

8.
A binary–solvent–based ionic–liquid–assisted surfactant‐enhanced emulsification microextraction method was developed for the separation/preconcentration and determination of four fungicides (pyrimethanil, fludioxonil, cyprodynil, pyraclostrobin) in apple juice and apple vinegar. A nonchlorinated solvent amyl acetate, which has a lower density than water, was used as the extraction solvent, and an ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate, which has a high density and low toxicity, was used as a secondary solvent mixed with the extraction solvent. After centrifugation, the binary solvent drop with a relatively high density was deposited on the bottom of the tube. Some parameters influencing the extraction efficiency of analytes such as type of extraction solvent, ratio of ionic liquid, volume of mixed solvent, type and concentration of surfactant, sample pH, NaCl concentration, and vortex time were investigated and optimized. Under the optimized conditions, the proposed method provided a good linearity in the range of 5–200 μg/L. The limits of quantification of the method were in the range of 2–5 μg/L. The relative standard deviations for interday assays were 1.7–11.9%. The method was applied to the determination of pyrimethanil, fludioxonil, cyprodynil, and pyraclostrobin in apple juice and apple vinegar samples, and the accuracy was evaluated through recovery experiments.  相似文献   

9.
An easy, quick, and green method, microwave‐assisted liquid–liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1‐Ethy‐3‐methylimidazolium hexafluorophosphate, which is a solid‐state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid‐state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00–400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%.  相似文献   

10.
In this research, a novel homogeneous liquid‐phase microextraction method was successfully developed based on applying octanoic acid as low‐density extraction solvent. The method was applied for extraction and determination of chlorophenols (CPs) as model compounds. Twelve milliliter of the sample solution was poured into a home‐designed glass vial. Sixty microliter of octanoic acid was solved in water sample by adjusting pH and ionic strength. By rapid addition of 75 μL of concentrated HCl (6 M), a cloudy solution was obtained. Phase separation occurred at 5000 rpm for 5 min. After that, 20 μL of the collected phase (approximately 26 μL) was injected into the HPLC‐UV instrument for analysis. The effect of some parameters such as the volume of concentrated HCl (phase separation reagent), ionic strength, extraction time, centrifugation time, and the volume of extracting phase on the extraction efficiency of the CPs were investigated and optimized. The preconcentration factors in a range of 159–218 were obtained under the optimal conditions. The linear range, detection limits (S/N = 3), and precision (n = 3) were 1– 200, 0.3–0.5 μg/L, and 4.6–5.1%, respectively. Tap water, seawater, and river water samples were successfully analyzed for the existence of CPs using the proposed method and satisfactory results were obtained.  相似文献   

11.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

12.
We report on the fabrication of a thin‐film composite for the extraction of bisphenol A from aqueous solutions. Nylon‐6, C18 particles, and polyethylene glycol were used to prepare the thin film sorbent. Bisphenol A was used as a model compound to evaluate the extraction efficiency of the sorbent. High‐performance liquid chromatography with UV detection was used for the analysis. The extraction yield of the sorbent was compared with other thin films fabricated using different sorbents including nanoclay, LiChrolut EN, and multiwalled carbon nanotubes. Experimental parameters affecting the extraction performance (extraction time, desorption condition, sample stirring, and ionic strength of the sample solution) were investigated. The detection limit and the dynamic range of the method were 0.05 and 0.15–50 μg/L, respectively. The relative standard deviation of the method at two concentration levels (0.5 and 20 μg/L) was less than 7.2%. Finally, a polycarbonate baby bottle, river water, and wastewater samples were analyzed by the method.  相似文献   

13.
The development of a simple and sensitive analytical approach that combines multiple monolithic fiber solid‐phase microextraction with liquid desorption followed by high‐performance liquid chromatography with diode array detection is proposed for the determination of trace levels of seven steroid sex hormones (estriol, 17β‐estradiol, testosterone, ethinylestradiol, estrone, progesterone and mestranol) in water and urine matrices. To extract the target analytes effectively, multiple monolithic fiber solid‐phase microextraction based on a polymeric ionic liquid was used to concentrate hormones. Several key extraction parameters including desorption solvent, extraction and desorption time, pH value and ionic strength in sample matrix were investigated in detail. Under the optimal experimental conditions, the limits of detection were found to be in the range of 0.027–0.12 μg/L. The linear range was 0.10–200 μg/L for 17β‐estradiol, 0.25–200 μg/L estriol, ethinylestradiol and estrone, and 0.50–200 μg/L for the other hormones. Satisfactory linearities were achieved for analytes with the correlation coefficients above 0.99. Acceptable method reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations of both less than 8%. The enrichment factors ranged from 54‐ to 74‐fold. Finally, the proposed method was successfully applied to the analysis of steroid sex hormones in environmental water samples and human urines with spiking recoveries ranged from 75.6 to 116%.  相似文献   

14.
In this work, a graphene composite was coated onto etched stainless‐steel wire through a sol–gel technique and it was used as a solid‐phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, 1,2‐dichlorobenzene, and 1,2,4‐trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 μg/L for 1,2,4‐trichlorobenzene and from 2.5 to 500.0 μg/L for chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, and 1,2‐dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 μg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 μg/L were from 76.0 to 104.0%.  相似文献   

15.
On‐line continuous sampling, ionic liquid‐based dynamic microwave‐assisted extraction high performance liquid chromatography has been developed and applied to the extraction of lipophilic constituents from root of Salvia miltiorrhiza Bunge. Several operating parameters were optimized by single‐factor and Box–Behnken design experiments. The type and concentration of ionic liquids, power of microwave irradiation, flow rate of sample suspension, amount, and particle size of sample were investigated. The limits of detection for tanshin‐one I, cryptotanshinone, and tanshinone IIA are 0.014, 0.009, and 0.009 mg/g, respectively. The RSDs of interday and intraday were lower than 2.02 and 2.16%, respectively. The recoveries for target analytes were in the range of 90.7–101.8%. The homogeneity of the suspension and stability of the analytes were investigated and the results were satisfactory. The proposed method was compared with the off‐line ionic liquid‐based dynamic microwave‐assisted extraction, off‐line ethanol‐based dynamic microwave‐assisted extraction, ionic liquid‐based ultrasonic‐assisted extraction, and ionic liquid‐based maceration extraction. The results indicated that the proposed method is effective for the extraction of the active components in Chinese herbal medicine and has some advantages over the other methods.  相似文献   

16.
The ultrasound‐assisted ionic liquid foam flotation solid‐phase extraction of sulfonylurea herbicides in milk was developed and validated. The proteins and lipids were isolated from the sample matrix by adding salt and adjusting the pH value. The target analytes eluted from the solid‐phase extraction cartridge were determined by high‐performance liquid chromatography. Some experimental parameters, including the pH value of sample solution, amount of NaCl, ionic liquid type, extraction time, flow rate of carrier gas, flotation time, and solid‐phase extraction cartridge type were investigated and optimized. Under the optimized experimental conditions, the limits of detection for metsulfuron, pyrazosulfuron, chlorimuron‐ethyl, and nicosulfuron were 1.3, 0.6, 0.7, and 1.1 μg/L, respectively. When the present method was applied to the analysis of milk samples the recoveries of the analytes ranged from 84.3 to 105.2% and relative standard deviations were >5.7%.  相似文献   

17.
A novel bis(indolyl)methane‐modified silica reinforced with multiwalled carbon nanotubes sorbent for solid‐phase extraction was designed and synthesized by chemical immobilization of nitro‐substituted 3,3′‐bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high‐performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single‐step solid‐phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R2) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5–5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro‐substituted 3,3′‐bis(indolyl)methane‐modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro‐substituted 3,3′‐bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface‐to‐volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π–π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as‐established solid‐phase extraction with high‐performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.  相似文献   

18.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

19.
A sensitive method based on ionic liquid for single‐drop liquid microextraction coupled with HPLC‐UV was developed for the determination of carbonyl compounds in environmental waters using 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8min][PF6] as extraction solvent and 2,4‐dinitrophenylhydrazine as derivatizing agent. The extraction parameters affecting the enrichment factors such as solvent volume, pH, extraction time and salt concentration were investigated. A homemade funnel form polytetrafluoroethylene sleeve was fixed at the tip of the syringe needle and this allowed the use of 10 μL drop of ionic liquid for direct immersion extraction. Under the optimal conditions, the remarkable enrichment factors up to 150‐fold were obtained depending on the target analytes. The method has been validated when rectilinear relationship was obtained between the concentrations of analytes and peak area in the range of 5–100 ng/mL, the correlation coefficients were from 0.995 to 0.998, and the limit of detection was in the range of 0.04–2.03 ng/mL. The method was applied to monitor the concentration of carbonyl compounds in environmental waters with spiked recovery in the range of 84.2–106.9%.  相似文献   

20.
Polyetheretherketone tube is a better substrate for in‐tube solid‐phase microextraction than fused‐silica capillary and metal tube because of its resistance to high pressure and good flexibility. It was modified with a nanostructured silver coating, and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. It was connected into high‐performance liquid chromatography equipment to build the online analysis system by replacing the sample loop of a six‐port injection valve. To get the highest extraction capacity, the preparation conditions of the coating was investigated. Important extraction conditions including length of tube, sample volume, and desorption time were optimized using eight polycyclic aromatic hydrocarbons as model analytes. The tube exhibits excellent extraction efficiency toward them, with enrichment factors from 52 to 363. The online analysis method provides good linearity (0.5–100 or 1.0–100 μg/L) and low detection limits (0.15–0.30 μg/L). It has been used to determine polycyclic aromatic hydrocarbons in water samples, with relative recoveries in the range of 92.3–120%. The tube showed highest extraction ability for polycyclic aromatic hydrocarbons, higher extraction ability for hydrophobic phthalates and anilines, and almost no extraction ability for low hydrophobic phenols, due to the possible extraction mechanism including hydrophobic and electron‐rich element‐metal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号