首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Silver amalgamated electrodes are a good substrate to determine lead (Pb) and cadmium (Cd) in seawater because they have properties similar to mercury but without the free mercury (Hg). Here a silver amalgamated microwire (SAM) electrode is optimised for the determination of Pb and Cd in coastal waters and uncontaminated ocean waters. The SAM was vibrated during the deposition step to increase the sensitivity, and electroanalytical parameters were optimised. The Hg coating required plating from a relatively concentrated (millimolar) solution, much greater (500×) than used for instance to coat glassy carbon electrodes. However, the coating on the ex situ amalgamated electrode was found to be stable and could be used for up to a week to determine trace levels of Pb in seawater of natural pH. The limit of detection square-wave ASV (50 Hz) using the pre-plated SAM electrode was 8 pM Pb using a 1-min plating time at pH 4.5. The limit of detection in pH 2 seawater was 4 pM using a 5-min plating time, and it was 12 pM using a 10-min plating time at natural pH in the presence of air, using a square-wave frequency of 700 Hz. The vibrating SAM electrode was tested on the determination of Pb in reference seawater samples from the open Atlantic (at the 20 pM level), Pacific, and used for a study of Pb in samples collected over 24 h in Liverpool Bay (Irish Sea).  相似文献   

2.
In this work, a simple, rapid, reliable and low cost method for simultaneous electrochemical determination of As, Cu, Hg and Pb ions, on a vibrating gold microwire electrode combined with stripping voltammetry, is described for the first time.The multi-element detection was performed in the presence of oxygen by differential pulse anodic stripping voltammetry (DPASV) in HCl 0.1 M with NaCl 0.5 M. This media was found optimum in terms of peak resolution, peak shape and sensitivities, and has a composition similar to seawater to which the method could potentially be applied. The gold microwire electrode presented well defined, undistorted, sharp and reproducible peaks for trace concentrations of Cu, Hg and Pb and As presented a reproducible peak with a small shoulder. Using a gold vibrating microwire electrode of 25 μm diameter and 30 s deposition time, the detection limits of As, Cu, Hg and Pb were 0.07, 0.4, 0.07 and 0.2 μg L−1, respectively. Possible effects of Al, Cd, Cr, Fe, Mn, Ni, Sb and Zn were investigated but did not cause any significant interferences.Finally, the method was applied for the simultaneous determination of these four metals in unpolluted river water samples and the results were validated by Atomic Absorption Spectroscopy with Electrothermal Atomization (AAS-EA) or by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).  相似文献   

3.
《Electroanalysis》2004,16(19):1583-1591
Micro‐wire electrodes were made from gold and silver wires (diameter: 25 μm; length: 3–21 mm) and sealed in a polyethylene holder; micro‐disk electrodes were made from the same wires and polished. The gold electrodes were electrochemically coated with mercury before use; the silver wires were used without coating. Comparative measurements demonstrated that the micro‐wire electrodes had much higher sensitivity, and a much (10–100×) lower limit of detection, than micro‐disk electrodes, and the sensitivity increased linearly with the area and length of the electrodes. Using a gold micro‐wire electrode of 21 mm and a deposition time of 300 s the limit of detection was 0.07 nM Pb in seawater of natural pH, compared to a limit of detection of 10 nM Pb (more than 100×greater) using a gold micro‐disk electrode of the same diameter. Using the silver micro‐wire electrode the limit of detection of lead was improved by a factor of 10 to 0.2 nM in acidified seawater. It is expected that the improved sensitivity of micro‐wire electrodes will lead to successful in situ detection of metals in natural waters.  相似文献   

4.
Wei Y  Yang R  Yu XY  Wang L  Liu JH  Huang XJ 《The Analyst》2012,137(9):2183-2191
We have demonstrated highly selective and sensitive detection of Pb(II) and Cd(II) using a highly selective adsorptive porous magnesium oxide (MgO) nanoflowers. The MgO nanoflower-modified glassy carbon electrode was electrochemically characterized using cyclic voltammetry; and the anodic stripping voltammetric performance of bound Pb(II) and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The MgO nanoflower-modified electrode exhibited excellent sensing performance toward Pb(II) and Cd(II) that was never observed previously at bismuth (Bi)-based electrodes. Simultaneous additions of Pb(II) and Cd(II) were investigated in the linear range from 3.3 to 22 nM for Pb(II) and 40 to 140 nM for Cd(II), and detection limits of 2.1 pM and 81 pM were obtained, respectively. Some foreign ions, such as Cu(II), Zn(II) and Cr(III) do not interfere with the detection of Pb(II) and Cd(II). To the best of our knowledge, this is the first example of a highly adsorptive metal oxide with hierarchical micro/nanostructure that allows the detection of both Pb(II) and Cd(II) ions.  相似文献   

5.
This work presents the optimisation, validation and field deployment of a voltammetric in situ profiling (VIP) system for the simultaneous determinations of dynamic Cd(II), Cu(II) and Pb(II) in estuarine and coastal waters. Systematic studies in NaNO3 (as a supporting electrolyte) and seawater, indicated that variations in ionic strength, pH and dissolved oxygen did not affect the response of the instrument, whereas an Arrhenius type temperature response was observed. The VIP instrument allows the determination of 2-3 samples h(-1), and has a detection limit (defined as 3sigma) in seawater for Cd(II): 23 pM, Cu(II): 1.13 nM, and Pb(II): 23 pM. The VIP system accurately measured the total dissolved concentrations of Cd(II), Cu(II) and Pb(II) in two certified reference materials; SLRS-3, a river water, and SLEW-2, an estuarine water. Field evaluation of the instrumentation and analytical methods was achieved through a series of surveys in the Plym Estuary (Devon, UK), from which environmental data are presented.  相似文献   

6.
It was demonstrated that Pb(II), Cd(II), Hg(II), Ni(II), Co(II), and Cu(II) can be indirectly determined as their unithiol complexes by amperometric detection under static and HPLC conditions. Factors affecting the Chromatographic separation and amperometric detection of metal complexes of unithiol were studied. Two designs of flow electrochemical cells (thin-layer and wall-jet cells) and three electrode materials (platinum, graphite, and glassy carbon) were compared. The best sensitivity was attained for an amperometric detector with wall-jet flow cell and a graphite indicator electrode. The detection limits for Hg(II), Pb(II), and Cd(II) were 0.9, 0.3, and 0.1 μg/mL, respectively. The Chromatographic determination of heavy metals in a sample of waste water was carried out using the amperometric detector  相似文献   

7.
A new and efficient Hg(II) back-elution method for the desorption of Cd, Cu, and Pb from Chelex-100 chelating resin was developed. A smaller eluent volume and shorter elution time can be achieved using an Hg(II) containing eluent rather than pure nitric acid. Owing to the remaining Hg(II) ion in the effluent, a mercury thin-film electrode is formed in-situ during the anodic stripping voltammetric determination without any further addition of Hg(II). The results indicate that all the analytes in seawater matrix can be completely adsorbed on Chelex-100 resin from the sample at pH 6.5, and subsequently eluted from the resin with an acid solution of 5 × 10–4 mol/L Hg2+ + 1 mol/L HClO4. The detection limits obtained from the differential-pulse anodic (μg L–1 to ng L–1) stripping voltammetry are at sub-ppb to ppt (μg L–1 to ng L–1) levels permitting to determine Cd, Cu and Pb traces in seawater. The analytical reliability was confirmed by the analysis of the certified reference material CASS-II (open ocean seawater). Received: 22 April 1997 / Revised: 5 August 1997 / Accepted: 7 August 1997  相似文献   

8.
Stability constants for Al(III), Cd(II), Co(II), Cu(II), Fe(III), Hg(II), La(III), Nd(III), Er(III), Mg(II). Mn(II), Ni(II), Pb(II), Th(IV) and Zn(II) complexes of triethylenetetraminehexaacetic acid (TTHA) have been evaluated from data obtained by pH and pM measurements. The pM method based on measurements with the mercury electrode and the redox system Fe(III)/Fe(II) proved to be very useful when binuclear complexes are formed.  相似文献   

9.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

10.
In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM).  相似文献   

11.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

12.
We report facile, template‐free, surfactant‐less flower and Christmas tree‐like cerium hexacyanoferrate (CeHCF) modified electrodes for simultaneous measurement of environmentally hazardous metals. The hierarchical growth of CeHCF on electrode surface was controlled by electrodeposition time at constant potential. This CeHCF modified electrode exhibits a prominent electrocatalytic activity towards detection of heavy metal ions such as cadmium (Cd), copper (Cu), lead (Pb) and mercury (Hg). The peaks are separated well at CeHCF modified electrode. Well separated peaks for the detection of these heavy metals in lake and tap water samples indicating CeHCF modified electrode as successful electrode for the reported sensor.  相似文献   

13.
Here we investigate the use of 3D printed graphene/poly(lactic acid) (PLA) electrodes for quantifying trace amounts of Hg, Pb, and Cd. We prepared cylindrical electrodes by sealing a 600 μm diameter graphene/PLA filament in a pipette tip filled with epoxy. We characterized the electrodes using scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry in ferrocene methanol. The physical characterization showed a significant amount of disorder in the carbon structure and the electrochemical characterization showed quasi‐reversible behavior without any electrode pretreatment. We then used unmodified graphene/PLA electrode to quantify Hg, and Pb and Cd in 0.01 M HCl and 0.1 M acetate buffer using square wave anodic stripping voltammetry. We were able to quantify Hg with a limit of detection (LOD) of 6.1 nM (1.2 ppb), but Pb and Cd did not present measurable peaks at concentrations below ~400 nM. We improved the LODs for Pb and Cd by depositing Bi microparticles on the graphene/PLA and, after optimization, achieved clear stripping peaks at the 20 nM level for both ions (4.1 and 2.2 ppb for Pb2+ and Cd2+, respectively). The results obtained for all three metals allowed quantification below the US Environmental Protection Agency action limits in drinking water.  相似文献   

14.
The preparation of Hg(II)-modified multi walled carbon nanotube (MWCNT) by reaction of oxidized MWCNT with aqueous HgCl2 was carried out. The Hg(II)-modified multi walled carbon nanotube (Hg(II)/MWCNT) dispersed in Nafion solution was used to coat the polished graphite electrode surface. The Hg(II)/MWCNT modified graphite electrode was held at a cathodic potential (−1.0 V) to reduce the coordinated Hg(II) to Hg forming nanodroplets of Hg. The modified electrode was characterized by FESEM/EDAX which provided useful insights on the morphology of the electrode. The SEM images showed droplets of Hg in the size of around 260 nm uniformly distributed on the MWCNT. Differential pulse anodic stripping voltammetry (DPASV) and electrochemical impedance spectroscopy were used to study the Hg(II) binding with MWCNT. Differential pulse anodic stripping voltammetry of ppb levels of cadmium and lead using the modified electrode yielded well-defined peaks with low background current under a short deposition time. Detection limit of 0.94 and 1.8 ng L−1 were obtained following a 3 min deposition for Pb(II) and Cd(II), respectively. Various experimental parameters were characterized and optimized. High reproducibility was observed from the RSD values for 20 repetitive measurements of Pb(II) and Cd(II) (1.7 and 1.9%, respectively). The determination of Pb(II) and Cd(II) in tap water and Pb(II) in human hair samples was carried out. The above method of fabrication of Hg(II)/MWCNT modified graphite electrode clearly suggests a safe route for preparing Hg immobilized electrode for stripping analysis.  相似文献   

15.
The determination of heavy metals in concentrations less than 10(-6) mol/L by ion chromatography with conductivity detection requires a preconcentration step. Therefore, a special electrochemical equipment and method was developed for the on-line preconcentration of the divalent metals Ni, Co, Zn and Cd and their subsequent ion chromatographic determination. The loop of the injection valve of an ion chromatograph was replaced by an electrochemical flow-through-cell with a gold working electrode, a platinum auxiliary electrode and a silver/silver sulphate reference electrode. The preconcentration step consists of the deposition of the reduced metals on the electrode surface during a continuous pumping of the sample solution through the cell. After switching of the mobile phase through the cell, the analytes are injected after their reoxidation directly into the mobile phase. A new preconcentration step is simultaneously possible during the actual chromatographic run. An effective separation of the analytes from the matrix is also possible with the proposed system. A maximum of metal ion accumulation was obtained after 120 min in the galvanostatic mode on a gold tube electrode. The detection limits for Co(II), Ni(II), Zn(II) and Cd(II) were improved by a factor of 7.7, 10.4, 11.2, 14.0, respectively, and were in the 0.1 micromol/L concentration range with a RSD of 2-6%. The accumulation of metal ions was disturbed in the presence of Cr(III).  相似文献   

16.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

17.
The utility of the cylindrical silver‐based mercury film electrode of prolonged analytical application in stripping chronopotentiometry (SCP) was examined. This electrode allowed us to obtain good reproducibility of results owing to the special electrode design, which enables regeneration of the thin layer before each measurement cycle. The accessible potential window in KNO3 (pH 2), acetate and ammonia buffers was defined, and the optimal conditions (i.e., stripping current, deposition potential and deposition time) for the determination of Cd and Pb traces were selected. The detection limits, obtained for an accumulation time of 60 s, were 0.023 μg/L for Cd and 0.075 μg/L for Pb. The response increases linearly with Cd, Pb and Zn concentration, up to at least 100 μg/L. It was also shown that the proposed procedure ensures excellent separation of the In and Tl, Pb and Tl or the In and Cd signals. The method was tested with dolomite and lake sediment samples, and good agreement with reference values was achieved. The obtained results showed good reproducibility (RSD=5–6%) and reliability.  相似文献   

18.
Electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in seawater samples. The isotope ratios of the elements studied in each analytical run were calculated from the peak areas of each isotope. Various modifiers were tested for the best signal of these elements. After preliminary studies, 0.15% m/v TAC and 4% v/v HCl were added to the sample solution to work as the modifier. The ETV-ID-ICP-MS method has been applied to the determination of Cd, Hg and Pb in NASS-4 and CASS-3 reference seawater samples and seawater samples collected from Kaohsiung area. The results for reference sample NASS-4 and CASS-3 agreed satisfactorily with the reference values. Results for other samples determined by isotope dilution and method of standard additions agreed satisfactorily. Detection limits were approximately 0.002, 0.005 and 0.001 ng ml−1 for Cd, Hg and Pb in seawater, respectively, with the ETV-ICP-MS method. Precision between sample replicates was better than 20% for most of the determinations.  相似文献   

19.
本文研究了溶液pH值、配体及某些重金属离子对细胞色素c电化学活性的影响.实验发现:在pH=2.0和pH=10.0的磷酸盐缓冲溶液中,细胞色素c失活;用强的配体CN-与铁卟啉发生配位取代反应虽使溶液相中的细胞色素c失活,但不影响吸附态的细胞色素c的活性;重金属离子Hg2+、Cd2+、Pb2+对细胞色素c电化学活性影响的程度不同,影响大小的顺序为Hg2+>Cd2+>Pb2+。并对可能的机理进行了讨论。  相似文献   

20.
The applicability of the subtractive anodic stripping voltammetry (SASV) using the square‐wave mode at the silver‐gold alloy electrode has been studied for thallium determination in the presence of large amount of lead and cadmium in natural samples. 10 mmol L?1 perchloric acid was found as the most suitable supporting electrolyte for determination in synthetic solutions. The thallium peak was separated about 200 mV from Cd+Pb peak. Diethylenetriaminepentaacetic acid addition was necessary to determine thallium at the silver‐gold alloy electrode in digested plant and sediment. The determination limit was equal to 1.4 μg L?1. The method was validated by the inter‐method comparison (ICP‐MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号