首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

2.
A facile one‐pot synthesis of 2,5‐disubstituted oxazoles was developed via cyclization of aldoximes and phenylacetylene then dehydrogenation oxidation. 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone was studied for the selective oxidation of oxazolines using Cu2+/Li+ as catalyst and O2 as indirect oxidant. The reaction results showed that this catalyst system can effectively catalyze the oxidation of oxazolines to the corresponding oxazoles. Thus, a variety of polysubstituted oxazoles was easily synthesized in high yields by catalytic oxidation of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone/CuCl2/LiCl/O2.  相似文献   

3.
Xa He  H‐Yan Lu  Guo‐Sheng Liu 《中国化学》2001,19(12):1285-1288
In the presence of CuCl2, N‐(2′, 4′‐dienyl)‐2‐alkynamides can be converted to α‐alkylidene‐σ‐butyrolactams under the catalysis of palladium(II). In this reaction, CuCl2 is used to oxidize Pd(0) to regenerate Pd(II), or the carbon‐palladium bond is quenched by the oxidative cleavage reaction of CuCl2.  相似文献   

4.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

5.
A multicomponent reaction for the synthesis of fused azo‐linked pyrazolo[4,3‐e]pyridines from 3‐amino‐5‐methylpyrazole, indan‐1,3‐dione and synthesized azo‐linked aldehydes using nano‐Fe3O4 as an effective and reusable catalyst is reported. The present methodology offers several advantages, such as a simple procedure with an easy work‐up, short reaction times, high yields, and the absence of any volatile and hazardous organic solvents.  相似文献   

6.
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway.  相似文献   

7.
Kumada‐Tamao coupling polymerization of 6‐bromo‐3‐chloromagnesio‐2‐(3‐(2‐methoxyethoxy)propyl)pyridine 1 with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of boronic ester monomer 2 , which has the same substituted pyridine structure, with tBu3PPd(o‐tolyl)Br were investigated for the synthesis of a well‐defined n‐type π‐conjugated polymer. We first carried out a model reaction of 2,5‐dibromopyridine with 0.5 equivalent of phenylmagnesium chloride in the presence of Ni(dppp)Cl2 and then observed exclusive formation of 2,5‐diphenylpyridine, indicating that successive coupling reaction took place via intramolecular transfer of Ni(0) catalyst on the pyridine ring. Then, we examined the Kumada‐Tamao polymerization of 1 and found that it proceeded homogeneously to afford soluble, regioregular head‐to‐tail poly(pyridine‐2,5‐diyl), poly(3‐(2‐(2‐(methoxyethoxy)propyl)pyridine) (PMEPPy). However, the molecular weight distribution of the polymers obtained with several Ni and Pd catalysts was very broad, and the matrix‐assisted laser desorption ionization time‐of‐flight mass spectra showed that the polymer had Br/Br and Br/H end groups, implying that the catalyst‐transfer polymerization is accompanied with disproportionation. Suzuki‐Miyaura polymerization of 2 with tBu3PPd(o‐tolyl)Br also afforded PMEPPy with a broad molecular weight distribution, and the tolyl/tolyl‐ended polymer was a major product, again indicating the occurrence of disproportionation. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The synthesis of 3,3‐dimethylmorpholine‐2,5‐diones 4a was achieved conveniently via the ‘direct amide cyclization’ of the linear precursors of type 3 , which were prepared by coupling of 2,2‐dimethyl‐2H‐azirin‐3‐amines 2 with 2‐hydroxyalkanoic acids 1 . Thionation of 4a with Lawesson's reagent yielded the corresponding 5‐thioxomorpholin‐2‐ones 10 and morpholine‐2,5‐dithiones 11 , respectively, depending on the reaction conditions. The structures of 3aa, 4aa, 10a , and 11a were established by X‐ray crystallography. All attempts to prepare S‐containing morpholine‐2,5‐dione analogs or thiomorpholine‐2,5‐diones by cyclization of corresponding S‐containing precursors were unsuccessful and led to various other products. The structures of some of them have also been established by X‐ray crystallography.  相似文献   

9.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

10.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

11.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

12.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

13.
Polyethers with unsymmetrical structures in the main chains and pendant chloromethyl groups were synthesized by the polyaddition of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with certain diacyl chlorides with quaternary onium salts or pyridine as catalysts. The unsymmetrical polyaddition of EGMO containing two different cyclic ether moieties such as oxirane and oxetane groups with terephthaloyl chloride proceeded smoothly in toluene at 90 °C for 6 h to give polymer 1 with a number‐average molecular weight (Mn) of 51,700 in a 93% yield when tetrabutylammonium bromide (TBAB) was used as a catalyst. The polyaddition also proceeded smoothly under the same conditions when other quaternary onium salts, such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide, and pyridine were used as catalysts. However, without a catalyst no reaction occurred under the same reaction conditions. Polyadditions of EGMO with isophthaloyl chloride and adipoyl chloride gave polymer 2 (Mn = 28,700) and polymer 3 (Mn = 25,400) in 99 and 65% yields, respectively, under the same conditions. The chemical modification of the resulting polymer, polymer 1 , which contained reactive pendant chloromethyl groups, was also attempted with potassium 3‐phenyl‐2,5‐norbornadiene‐2‐carboxylate with TBAB as a phase‐transfer catalyst, and a polymer with 65 mol % pendant norbornadiene moieties was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 368–375, 2001  相似文献   

14.
An efficient synthesis for polysubstituted benzenes was successfully developed by the reaction of ninhydrin (=2,2‐dihydroxyindane‐1,3‐dione), malononitrile (=propanedinitrile), and alkylidenemalononitrile. The method involves vinylogous Michael addition of alkylidenemalononitrile to 2‐(1,3‐dioxo‐1H‐inden‐2(3H)‐ylidene)malononitrile, which formed by condensation of malononitrile and ninhydrin in the presence of Et3N, and the alcoholic solvent has participated in the reaction as a reagent. The method has the advantages of good yields and of not requiring a metal catalyst. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses, and, in the case of 2c , by X‐ray crystallography. A plausible mechanism for this reaction is proposed (Scheme).  相似文献   

15.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

16.
A simple and efficient protocol has been developed for the synthesis of 3‐phenylnaphtho[2,3‐b]furan‐4,9‐diones by domino reaction of α‐bromonitroalkenes to 2‐hydroxynaphthalene‐1,4‐dione. With the optimal reaction conditions [NaOAc (120 mol%), water, 70°C, 7 h], the scope of the domino reaction was explored and the green approach provided the desired products in moderate to good yields at elevated temperature under aqueous‐mediated conditions. A mechanistic rationalization for this reaction is also provided. The absorption characteristics of the compounds were examined by UV‐Vis spectra and fluorescence spectroscopy. All compounds were fluorescent in solution emitting at blue light (432–433 nm), green light (512–536 nm), or yellow light (591 nm).  相似文献   

17.
A simple and eco‐friendly method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1H‐pyrrol‐2(5H)‐ones via the cyclo‐condensation reaction of aldehydes, amines and ethyl pyruvate in the presence of silica supported ferric chloride (SiO2‐FeCl3) as reusable heterogeneous catalyst is described. The present methodology offers several advantages such as excellent yields, simple procedure and short reaction times.  相似文献   

18.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

19.
The 1‐{[(1H‐1,2,3‐Triazol‐4‐yl)methoxy]phenyl}‐1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives 5 were synthesized by a simple and efficient method, i.e., by the four‐component, one‐pot condensation reaction of phthalohydrazide 4 , a (propargyloxy)benzaldehyde 1 , an active methylene compound 3 (malononitrile or ethyl cyanoacetate), and an azide 2 in the presence of Cu(OAc)2/sodium L ‐ascorbate as catalyst and 1‐methyl‐1H‐imidazolium trifluoroacetate ([Hmim](CF3COO)) as an ionic‐liquid medium in good to excellent yields (Scheme 1).  相似文献   

20.
Jing Cao  Liang Wang 《中国化学》2015,33(11):1239-1243
A practical and metal‐free oxidative amidation of aldehydes with tetrazoles into 1,3,4‐oxadiazoles has been developed by employing tetrabutylammonium iodide (TBAI) as catalyst and tert‐butyl hydroperoxide (TBHP) as oxidant. A wide range of 2,5‐disubstituted 1,3,4‐oxadiazoles can be conveniently generated in moderate to good yields. Gram‐scale reaction was also realized in this catalytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号