首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new fluorescent molecular probe, 2,2′‐(1E,1′E)‐2,2′‐(4‐(dicyanomethylene)‐4H‐pyrane‐2,6‐diyl)bis(ethene‐2,1‐diyl)bis(sodium benzenesulfonate) salt ( 1 ), possessing the cyanopyranyl moieties and two benzene sulfonic acid groups was designed and synthesized to detect proteins in solution and for high‐throughput SDS‐PAGE. Compound 1 exhibited no fluorescence in the absence of proteins; however, it exhibited strong fluorescence on the addition of bovine serum albumin as a result of intramolecular charge transfer. Compared with the conventional protocols for in‐gel protein staining, such as SYPRO Ruby and silver staining, 1 achieves higher sensitivity, even though it offers a simplified, higher throughput protocol. In fact, the total time required for protein staining was 60–90 min under optimum conditions much shorter than that required by the less‐sensitive silver staining or SYPRO Ruby staining protocols. Moreover, 1 was successfully applied to protein identification by mass spectrometry via in‐gel tryptic digestion, Western blotting, and native PAGE together with protein staining by 1 , which is a modified protocol of blue native PAGE (BN‐PAGE). Thus, 1 may facilitate high‐sensitivity protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields.  相似文献   

2.
Despite all remarkable progress in gel‐based proteomics in recent years, there is still need to further improve quantification by decreasing the detection limits and increasing the dynamic range. These criteria are achieved best by fluorescent dyes that specifically stain the proteins either by adsorption after gel electrophoresis (in‐gel staining) or covalent coupling prior to gel electrophoresis (in‐solution staining). Here we report a multiplex analysis of protein samples using maleimide‐activated cyanine‐based (Cy3 and Cy5) and rhodamine‐based dyes (Dy505, Dy535, and Dy635) to permanently label all thiol‐groups of cysteine‐containing proteins. The detection limits in SDS‐PAGE were about 10 ng per band and even 2 ng for BSA due to its high content of cysteine residues. Thus only 5 μg protein of a mouse brain homogenate were analyzed by 2‐DE. Both cyanine‐ and rhodamine‐based dyes also stained proteins that did not contain cysteines, probably by reaction with amino groups. This side reactivity did not limit the method and might even extend its general use to proteins missing cysteine residues, but at a lower sensitivity. The dynamic range was more than two orders of magnitude in SDS‐PAGE and the Dy‐fluorophores did not alter the mobility of the tested proteins. Thus, a mixture of Dy505‐, Dy555‐, and Dy635‐labeled Escherichia coli lysates were separated by 2‐DE in a single gel and the three spot patterns relatively quantified.  相似文献   

3.
In the bacterial signaling mechanisms known as two‐component systems (TCSs), signals are generally conveyed by means of a His–Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status. Here, we show that the Phos‐tag dye technology is suitable for the fluorescent detection of His‐ and Asp‐phosphorylated proteins separated by SDS‐PAGE. The dynamics of the His–Asp phosphorelay of recombinant EnvZ‐OmpR, a TCS derived from Escherichia coli, were examined by SDS‐PAGE followed by simple rapid staining with Phos‐tag Magenta fluorescent dye. The technique permitted not only the quantitative monitoring of the autophosphorylation reactions of EnvZ and OmpR in the presence of adenosine triphosphate (ATP) or acetyl phosphate, respectively, but also that of the phosphotransfer reaction from EnvZ to OmpR, which occurs within 1 min in the presence of ATP. Furthermore, we demonstrate profiling of waldiomycin, an HK inhibitor, by using the Phos‐tag Cyan gel staining. We believe that the Phos‐tag dye technology provides a simple and convenient fluorometric approach for screening of HK inhibitors that have potential as new antimicrobial agents.  相似文献   

4.
A negative detection method for proteins on SDS‐PAGE is described. In this method, Eosin Y (EY) was selectively precipitated in the gel background, which is absent from those zones where proteins are located through the formation of a stable water‐soluble protein–dye complex. Negative staining of proteins using EY, allows high‐sensitivity, low‐cost, and simple protocol. The new described method takes less than an hour to complete all the protocol, with a detection limit of 0.5 ng of single protein band. Comparing with imidazole‐zinc negative stain, EY dye provides broader linear dynamic range, higher sensitivity and reproducibility, and better obvious contrast between the protein bands or spots and background. Furthermore, the novel technique developed here presented a real practical method for simultaneous processing of multiple gels, which makes it possible to perform high‐throughput staining for proteome research. Additionally, we have also compared the influence of staining method on the quality of mass spectra by PMF.  相似文献   

5.
Extracting and concentrating mitochondrial protein complexes from gel strips after blue native PAGE (BN‐PAGE) can be daunting tasks using the traditional methods, such as electroelution, passive diffusion and centrifugal concentration. We present a simplified gel electrophoresis method to concentrate mitochondrial protein complexes with excellent recovery rate. Mitochondrial complex I present in a long gel strip from BN‐PAGE can be easily concentrated into a 0.8 cm gel strip when a second BN‐PAGE is performed with a Y‐shaped gel and the addition of 0.01% n‐dodecyl β‐D ‐maltoside and 0.001% SDS in the cathode buffer. Once completed, the concentrated protein complex in the gel strip is ready for SDS‐PAGE or proteomic studies.  相似文献   

6.
Hydro‐Alumination: Synthesis, Structure, and Properties of 1‐Methyl‐ cis ‐1‐azonia‐5‐alabicyclo[3.3.0]octane and of the Alan‐triallylamine Adduct The alan‐N‐methyl‐diallylamine adduct ( I ) was obtained by the reaction of N,N‐diallyl‐methyl‐ammoniumchloride with LiAlH4. Subsequently the reaction product was transformed by intramolecular hydro‐alumination reaction into bis(1‐methyl‐cis‐1‐azonia‐5‐alabicyclo[3.3.0]octane) ( II ). In contrast to I , the bis(alan‐triallylamine) adduct ( III ) does not undergo an analogous hydro‐alumination reaction. The compounds I , II and III were characterized by MS, IR, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and the X‐ray structures of II and III are reported and discussed.  相似文献   

7.
A fluorescent staining technique, using selective chelation with fluorophore and metal ion to the phosphate groups of phosphoproteins in SDS‐PAGE is described. As a fluorescent dye and a metal ion, Fura 2 pentapotassium salt and Al3+ were employed, respectively. The staining method, Fura 2 stain, has sensitivities of 16–32 ng of α‐casein and β‐casein, 62 ng of ovalbumin, phosvitin, and κ‐casein using an ultraviolet transilluminator. Furthermore, Fura 2 stain is able to carry out continuative double detection of total proteins and phosphoproteins on the same gel within 3.5 h. Consequently, selective phosphoprotein and total protein detections could be obtained without other poststaining. Considering the low cost, simplicity, and speed, Fura 2 staining may provide great practicalities in routine phosphoproteomics research.  相似文献   

8.
A fluorescent quenching detection method for phosphoproteins in SDS‐PAGE by using calconcarboxylic acid (CCA) was described. In this method, the fluorescence intensity of CCA was greatly increased with the presence of Al3+ in the gel background, while in zones where phosphoproteins are located this intensity was absent because of fluorescence quenching phenomenon through the formation of CCA‐Al3+‐phosphoprotein appended complex. Approximately 4–8 ng of phosphoproteins can be selectively detected within 1 h (1D SDS‐PAGE), which is similar to that of the most commonly used Pro‐Q Diamond stain. The specificity of this novel technique for phosphoproteins was confirmed by dephosphorylation, Western blot, and LC‐MS/MS analysis, respectively. Furthermore, to better understand the newly developed method, the detection mechanism of CCA stain was explored by fluorescent spectrometry. According to the results, it is believed that CCA stain may provide a new choice for selective, economical, MS compatible, and convenient visualization of gel‐separated phosphoproteins.  相似文献   

9.
Several new fast staining protocols for the visualization of proteins separated by SDS‐PAGE utilizing Coomassie Blue staining (CBS) have been described in literature. The sensitivity of a newly designed staining protocol is usually estimated using 1D SDS‐PAGE of serially diluted protein samples. However, this approach is not predictive and satisfactory for 2D SDS‐PAGE capable of resolving hundreds or thousands of different proteins in a single analysis. In this work, a new fast staining protocol recently introduced by Dong et al. (PLoS One 2011, 6, e22394) was compared to colloidal CBS. The number of detectable spots in 2D SDS‐PAGE of identical blood plasma samples in repeated runs was chosen as a sensitivity criterion. Further, the influence of gel boiling on the subsequent protein identification by MS was investigated. In spite of its advantages, the staining protocol according to Dong et al. (PLoS One 2011, 6, e22394) seems to be less sensitive than colloidal Coomassie staining when the number of detected spots is the evaluating criterion. No obvious influence of gel boiling on the protein identification was observed.  相似文献   

10.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

11.
A simple and sensitive fluorescent staining method for the detection of proteins in SDS‐PAGE, namely IB (improved 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid) stain, is described. Non‐covalent hydrophobic probe 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid was applied as a fluorescent dye, which can bind to hydrophobic sites in proteins non‐specifically. As low as 1 ng of protein band can be detected briefly by 30 min washing followed by 15 min staining without the aiding of stop or destaining step. The sensitivity of the new presented protocol is similar to that of SYPRO Ruby, which has been widely accepted in proteomic research. Comparative analysis of the MS compatibility of IB stain and SYPRO Ruby stain allowed us to address that IB stain is compatible with the downstream of protein identification by PMF.  相似文献   

12.
Fimasartan, 2‐butyl‐5‐dimethylaminothiocarbonylmethyl‐6‐methyl‐3‐[[2'‐(1H tetrazol ‐5‐yl)biphenyl‐4‐yl]methyl]pyrimidin‐4(3H)‐one (BR‐A‐657), is a novel angiotensin II receptor blocker exhibiting potent and selective AT1 receptor blocking activity. This study reports the liquid chromatography–tandem mass spectrometry assay for the simultaneous determination of fimasartan and its active metabolite, BR‐A‐557, in rat plasma. The assay was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification, accuracy, precision and stability. The multiple reaction monitoring was based on the transition of m/z 502.1 → 207.1 for fimasartan, 486.2 → 207.1 for BR‐A‐557 and 526.1 → 207.1 for BR‐A‐563 (internal standard). The assay utilized a simple precipitation procedure with acetonitrile and isocratic elution. The LLOQ was 0.2 ng/mL for fimasartan and BR‐A‐557 using 50 μL plasma samples. The assay was linear over a concentration range from 0.2 to 500 ng/mL for fimasartan and BR‐A‐557, with correlation coefficients >0.9995. The intra‐ and inter‐day assay accuracies were 93.6–108.0 and 90.8–101.4% for fimasartan and 102.2–107.1 and 99.6–103.3% for BR‐A‐557, respectively. The intra‐ and inter‐day precision were 2.4–4.4 and 3.0–13.4% for fimasartan and 3.1–5.2 and 2.8–9.8% for BR‐A‐557, respectively. The developed assay may be used to study the metabolism and mechanistic pharmacokinetics of fimasartan in future studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes detailed structure‐property relationships of 5 regioselectively methylated celluloses and 10 diblock cellulose derivatives with regioselective functionalization patterns: methyl 2,3,6‐tri‐O‐ ( 1 , 236MC), methyl 2,3‐di‐O‐ ( 2 , 23MC), methyl 2,6‐di‐O‐ ( 3 , 26MC), methyl 3‐O‐ ( 4 , 3MC), methyl 6‐O‐methyl‐cellulosides ( 5 , 6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 6 , G‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 7 , G‐23MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 8 , G‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 9 , G‐3MC), methyl β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐ ( 10 , G‐6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 11 , GG‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 12 , GG‐23MC), methyl β‐D‐glucopy‐ranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 13 , GG‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 14 , GG‐3MC), and methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐cellulosides ( 15 , GG‐6MC). Surface tension, differential scanning calorimetry, fluorescence, and dynamic light scattering measurements of aqueous solutions of compounds 1 – 15 revealed that there was no relationship between aggregation behaviors and gel formation, gelation occurred only when the hydrophobic environments formed by hydrophobic interactions between the sequences of 2,3,6‐tri‐O‐methyl‐glucopyranosyl units upon heating. The diblock structure consisting of cellobiosyl block and approx. ten 2,3,6‐tri‐O‐methyl‐glucopyranosyl units was of crucial importance for thermoreversible gelation of methylcellulose. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1539–1546, 2011  相似文献   

14.
The synthesis of linear‐ and (1→6)‐branched β‐(1→4)‐d ‐galactans, side‐chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n‐pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction with a covalent linker and immobilization on N‐hydroxysuccinimide (NHS)‐modified glass surfaces allows the generation of carbohydrate microarrays. The glycan arrays enable the study of protein–carbohydrate interactions in a high‐throughput fashion, demonstrated herein with binding studies of mAbs and a CBM.  相似文献   

15.
Two new triterpene glycosides, 1 and 2 , together with three known ones, were isolated from roots of Acanthophyllum laxiusculum Schiman ‐Czeika . The structures of the new compounds were established by extensive 1D‐ and 2D‐NMR spectroscopic experiments and MS analyses as 23‐Oβ‐D ‐galactopyranosylgypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 1 ) and gypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 2 ).  相似文献   

16.
Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes‐AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes‐AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA‐ICP‐MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs‐protein binding (what is not possible using SDS‐PAGE).  相似文献   

17.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

18.
SDS‐PAGE is still one of the most widespread separation techniques in proteomic research and usually coupled to subsequent MS measurement for protein identification. The proteins are digested while embedded in the gel matrix. The resultant peptides are eluted out of the gel and finally analyzed. The in‐gel digestion process suffers from several drawbacks which influence the experimental outcome with respect to protein sequence coverage and detection sensitivity. Limited accessibility of the protease to the substrate protein and insufficient peptide extraction represent the two major problems. To specifically target these issues, we established a novel partly reversible gel system, in which the gel matrix can be conditionally cleaved to increase the pore diameters. By using a crosslinker mixture consisting of Bis and ethylene‐glycol‐diacrylate the acrylamide filament interconnections can be partly hydrolyzed in alkaline solution. The new hybrid gels have been tested to be compatible with a variety of acidic staining techniques. They exhibit similar electrophoretic performance compared with regular solely Bis‐based gels, but yield significantly better MS results. Thus, the Bis/ethylene‐glycol‐diacrylate SDS‐PAGE gel system is a promising alternative for MS‐based in‐gel workflows and might be transferred to other gel‐electrophoretic applications.  相似文献   

19.
Researchers frequently use two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D‐PAGE method, which ‘inverts’ the dimension of protein separation of the conventional 2D‐PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first‐dimension separation was conducted on a gel‐free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second‐dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D‐PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D‐PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D‐PAGE. Overall, the i2D‐PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.  相似文献   

20.
A series of bis‐amides decorated with pyridyl and phenyl moieties derived from L ‐amino acids having an innocent side chain (L ‐alanine and L ‐phenyl alanine) were synthesized as potential low‐molecular‐weight gelators (LMWGs). Both protic and aprotic solvents were found to be gelled by most of the bis‐amides with moderate to excellent gelation efficiency (minimum gelator concentration=0.32–4.0 wt. % and gel–sol dissociation temperature Tgel=52–110 °C). The gels were characterized by rheology, DSC, SEM, TEM, and temperature‐variable 1H NMR measurements. pH‐dependent gelation studies revealed that the pyridyl moieties took part in gelation. Structure–property correlation was attempted using single‐crystal X‐ray and powder X‐ray diffraction data. Remarkably, one of the bis‐pyridyl bis‐amide gelators, namely 3,3‐Phe (3‐pyridyl bis‐amide of L ‐phenylalanine) displayed outstanding shape‐sustaining, load‐bearing, and self‐healing properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号