首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Hydrolysis reaction of Fe(NO3)3 at a high temperature in the presence of urea as the homogeneous precipitant was studied. With the prepared ceramic filter balls loaded with α-Fe2O3 after high temperature calcination, the loading of α-Fe2O3 on the porous ceramic filter balls from Fe(NO3)3 solutions of different concentrations and mechanical stability of the loaded α-Fe2O3 were studied. The product was characterized using XRD and SEM. Adsorption experiments were conducted to evaluate the performance of the product in adsorbing NH3-N. It turned out that the specific surface area of the ceramic filter balls loaded with α-Fe2O3 had increased to 36.5387 m2/g from original 4.6127 m2/g. When the concentration of Fe(NO3)3 was 0.40 mol/L, the loading of α-Fe2O3 on the ceramic filter balls accounted for 8.4% of the total mass of the adsorbent and α-Fe2O3 was adsorbed on the filter balls very well. The adsorption isotherm of NH3-N on the ceramic filter ball adsorbent loaded with α-Fe2O3 was of Langmuir type. The saturated adsorption capacity was 3.33 mg/L, and the adsorption constant K was 0.1873. NH3-N was adsorbed by α-Fe2O3 more easily, which was a kind of specific adsorption.  相似文献   

2.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

3.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

4.
A series of KF/Al2O3 catalyzed Michael-addition reactions between malononitrile and α,β-unsaturated cycloketones in DMF solution were studied. At room temperature, 2-cyano-3-aryl-3-(1,2,3,4-tetrahydronaphthalen-1-one-2-yl) propionitrile derivatives were synthesized by the reaction between 2-arylmethylidene-1,2,3,4-tetra-hydronaphthalen-1-one and malononitrile. However, if the temperature was increased to 80℃, 2-amino-3-cyano-4-aryl-4H-benzo[h]chromene derivatives were obtained in high yields. When the α,β-unsaturated ketones were replaced by 2,6-biarylmethylidenecyclohexanone or 2,5-biarylmethylidenecyclopentanone, another series of 2-amino-3-cyano-4H-pyran derivatives was isolated successfully. The structures of the products were confirmed by X-ray diffraction analysis.  相似文献   

5.
Zirconium(IV) chloride catalyzed efficient one-pot synthesis of β-amino/β-acetamido carbonyl compounds at room temperature is described. In the presence of ZrCl4, the three-component Mannich-type reaction via a variety of in situ generated aldimines, with various ketones, aromatic aldehydes and aromatic amines in ethanol, led to the formation of β-amino carbonyl compounds and the four-component Mannich-type reaction of aromatic aldehydes with various ketones, acetonitrile and acetyl chloride resulted in the corresponding β-acetamido carbonyl compounds in high to excellent yields. This methodology has also been applied towards the synthesis of dimeric β-amino/β-acetamido carbonyl compounds.  相似文献   

6.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

7.
Fe3O4 magnetic nanoparticles (MNPs) were functionalized by aminopropylsilane and reacted with aromatic aldehyde, and Fe3O4‐Si‐[CH2]3‐N=CH‐Aryl and Fe3O4‐Si‐(CH2)3‐NH‐CH2‐Aryl MNPs were prepared as novel magnetic nanocatalysts. Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM) were used to identify the MNPs. The catalytic activity of the MNPs was evaluated in the one‐pot synthesis of some novel poly‐substituted pyridine derivatives.  相似文献   

8.
DABCO (1,4‐diazabicyclo[2.2.2]octane)‐modified magnetite with silica‐MCM‐41 shell (Fe3O4@silica‐MCM‐41@DABCO) as an effective, magnetic and novel heterogeneous reusable nanocatalyst was synthesized and analysed using various techniques. Evaluation of the catalytic activity of this nanocatalyst was performed in the clean synthesis of substituted 2‐aminodihydropyrano[3,2‐b]pyran‐3‐cyano in high yields via in situ reaction of azido kojic acid, malononitrile and various aldehydes.  相似文献   

9.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

10.
《中国化学会会志》2018,65(5):523-530
Polyethylene glycol‐(N‐methylimidazolium) hydroxide‐grafted hydroxyapatite encapsulated γ‐Fe2O3 nanoparticles, γ‐Fe2O3@HAp@PEG(mim)OH, were prepared and characterized by FTIR, SEM, TEM, TGA, and EDAX. This nanocomposite was applied as a novel, green, nanomagnetic, and recyclable basic phase‐transfer catalyst for the synthesis of tetrahydrobenzopyrans in high yields via the three‐component reaction of aromatic aldehydes, malononitrile, and dimedone or 1,3‐cyclohexanedione in aqueous media at ambient temperature.  相似文献   

11.
Thiourea dioxide was immobilized on γ‐Fe2O3@Cu3Al‐LDH magnetic nanoparticles to prepare the γ‐Fe2O3@Cu3Al‐LDH‐TUD MNPs. The structure and properties of these magnetic nanoparticles were established by FT‐IR, EDX, SEM, XRD, and hystogram of particle size analytical methods. The results obtained from these analytical methods confirmed the successful immobilization of the thiourea dioxide onto the magnetic support. The synthesized magnetic nanoparticles (MNPs) exhibited high catalytic activity in one‐pot three‐component reactions under mild and solvent‐free conditions for the synthesis of diverse ranges of dihydropyrano[3,2‐c]pyrazoles and dihydropyrano[3,2‐c]chromens. All the reactions proceeded smoothly to furnish the respective products in excellent yields. Simple isolation of the products, avoidance of harmful organic solvents, versatility of the catalyst and its easy magnetic separation and reusability with no significant loss of activity are the main advantages of the present method.  相似文献   

12.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

13.
Perylene diimide‐modified magnetic γ‐Fe2O3/CeO2 nanoparticles (γ‐Fe2O3/CeO2‐PDI) were prepared and exhibited excellent peroxidase‐like activity. The samples were characterized by HR‐TEM, XRD, Raman, N2 adsorption, magnetic strength and XPS. The obtained γ‐Fe2O3/CeO2‐PDI had size of 10~20 nm with high specific surface area of 77 m2/g, and could be easily separated from the aqueous solution by using a magnet, which are in favor of its practical application. Due to the decoration of PDI, the γ‐Fe2O3/CeO2‐PDI possessed more surface defects (Ce3+) and active oxygen species than that of γ‐Fe2O3/CeO2, resulting in the outstanding catalytic performance. And the composite catalyst also showed highly sensitive and selectivity toward VC with a limit of detection of 0.45 μM. Based on the fluorescent results, a possible hydroxyl radical (?OH) catalytic mechanism was proposed. It is believed that the as‐prepared γ‐Fe2O3/CeO2‐PDI nanoparticles are promising biosensors applied for biomedical and food analysis.  相似文献   

14.
A stereospecific synthesis of (2S)3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol from D ‐mannitol has been developed. The reaction of 2,3‐O‐isopropylidene‐D ‐glyceraldehyde with 2,4,5‐trifluorophenylmagnesium bromide gave [(4R)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl](2,4,5‐trifluorophenyl)methanol in 65% yield as a mixture of diastereoisomers (1 : 1). The Ph3P catalyzed reaction of the latter with C2Cl6 followed by reduction with Pd/C‐catalyzed hydrogenation gave (2S)‐3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol with >99% ee and 65% yield.  相似文献   

15.
本文合成了并培养出了七-O-乙酰基—β—乳糖异硫氰酸酯的单晶,用X射线衍射分析了其晶体结构。结果表明,晶体为正交晶系,P212121空间群,a=1.23282(7),b=1.80012(10),c=1.85230(10) nm,α=β=γ=90°,V=4.1107(4) nm3,Z=4。电化学实验观测到单链DNA和双链DNA对该化合物的峰电流均有明显降低作用,表明化合物与DNA发生了静电作用。  相似文献   

16.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

17.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

18.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

19.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
申秀民  刘玉美  何兰 《中国化学》2005,23(3):305-309
Lophenol, cholest-4α-methyl-7-en-3β-ol (1), obtained from Dracaena cochinchinensis (Lour.) S. C. Chen, was structurally modified. It was acetylated to protect 3β-hydroxyl group, and then oxidised by selenium dioxide in acetic acid to give cholest-4a-methyl-8-en-3β, Ta-diol diacetate (3). This compound 3 is unstable in chloroform solution or when heated and easily converted to a diene compound, cholest-4a-methyl-7,14-dien-3β-ol acetate (4). The structures of 3 and 4 were elucidated by means of IR, ^1H NMR, ^13C NMR and MS, and the absolute configuration of 3 was established by X-ray crystallography. The property of 3 was also discussed in this paper. Both 3 and 4 are new compounds and were reported for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号