首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Sonic boom focusing phenomenon can be predicted using the solution to the nonlinear Tricomi equation which is a hybrid (hyperbolic‐elliptic) second‐order partial differential equation. In this paper, the hyperbolic conservation law form is derived, which is valid in the entire domain. In this manner, the presence of two regions where the equation behaves differently (hyperbolic in the upper and elliptic in the lower half‐plane) is avoided. On the upper boundary, a new mixed boundary condition for the acoustic pressure is employed. The discretization is carried out using a discontinuous Galerkin (DG) method combined with a Runge–Kutta total‐variation diminishing scheme. The results show the accuracy of DG methods to solve problems involving sharp gradients and discontinuities. Comparisons with analytical results for the linear case, and other numerical results using classical explicit and compact finite difference schemes and weighted essentially non‐oscillatory schemes are included. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Efficient and robust p‐multigrid solvers are presented for solving the system arising from high‐order discontinuous Galerkin discretizations of the compressible Reynolds‐Averaged Navier–Stokes (RANS) equations. Two types of multigrid methods and a multigrid preconditioned Newton–Krylov method are investigated, and both steady and unsteady algorithms are considered in this paper. For steady algorithms, a new strategy is introduced to determine the CFL number, which has been proved to be critical in achieving the effective and stable convergence for p‐multigrid methods. We also suggest a modified smoothing technique to further improve the efficiency of the algorithms. For unsteady algorithms, special attention has been paid to the cycling strategy and the full multigrid technique, and we point out a significant difference on the parameter selection for unsteady computations. The capabilities of the resulted solvers have been examined by performing steady and unsteady RANS simulations. Comparative assessment in terms of efficiency, robustness, and memory consumption are carried out for all solvers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
An adaptive spectral/hp discontinuous Galerkin method for the two‐dimensional shallow water equations is presented. The model uses an orthogonal modal basis of arbitrary polynomial order p defined on unstructured, possibly non‐conforming, triangular elements for the spatial discretization. Based on a simple error indicator constructed by the solutions of approximation order p and p?1, we allow both for the mesh size, h, and polynomial approximation order to dynamically change during the simulation. For the h‐type refinement, the parent element is subdivided into four similar sibling elements. The time‐stepping is performed using a third‐order Runge–Kutta scheme. The performance of the hp‐adaptivity is illustrated for several test cases. It is found that for the case of smooth flows, p‐adaptivity is more efficient than h‐adaptivity with respect to degrees of freedom and computational time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A p‐adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high‐order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high‐order continuous Galerkin method using static condensation of the interior nodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a new discontinuous Galerkin finite element method for the numerical solution of flow problems with discontinuities is presented. The method is based on the limitation in every cell of the difference between the extrema values and the mean value of the numerical solution. The algorithm and technical details for the implementation of the method are presented in one‐and two‐dimensional problems. Numerical experiments for classical test problems are solved on unstructured triangulations to demonstrate the performance of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The frequency or dispersion relation for the discontinuous Galerkin mixed formulation of the 1‐D linearized shallow‐water equations is analysed, using several basic DG mixed schemes. The dispersion properties are compared analytically and graphically with those of the mixed continuous Galerkin formulation for piecewise‐linear bases on co‐located grids. Unlike the Galerkin case, the DG scheme does not exhibit spurious stationary pressure modes. However, spurious propagating modes have been identified in all the present discontinuous Galerkin formulations. Numerical solutions of a test problem to simulate fast gravity modes illustrate the theoretical results and confirm the presence of spurious propagating modes in the DG schemes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The present paper addresses the numerical solution of turbulent flows with high‐order discontinuous Galerkin methods for discretizing the incompressible Navier‐Stokes equations. The efficiency of high‐order methods when applied to under‐resolved problems is an open issue in the literature. This topic is carefully investigated in the present work by the example of the three‐dimensional Taylor‐Green vortex problem. Our implementation is based on a generic high‐performance framework for matrix‐free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier‐Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under‐resolved regime, our results reveal that demonstrating improved efficiency of high‐order methods is a challenging task and that optimal computational complexity of solvers and preconditioners as well as matrix‐free implementations are necessary ingredients in achieving the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor‐Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern cache‐based computer architectures achieving a throughput for operator evaluation of 3·108 up to 1·109 DoFs/s (degrees of freedom per second) on one Intel Haswell node with 28 cores. Compared to performance results published within the last five years for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup.  相似文献   

9.
In this paper some preliminary results concerning the application of the high‐order discontinuous Galerkin (DG) method for the resolution of realistic problems of tidal flows around shallow water islands are presented. In particular, tidal flows are computed around the Rattray island located in the Great Barrier Reef. This island is a standard benchmark problem well documented in the literature providing useful in situ measurements for validation of the model. Realistic elements of the simulation are a tidal flow forcing, a variable bathymetry and a non‐trivial coastline. The computation of tidal flows in shallow water around an island is very similar to the simulation of the Euler equations around bluff bodies in quasi‐steady flows. The main difference lies in the high irregularity of islands' shapes and in the fact that, in the framework of large‐scale ocean models, the number of elements to represent an island is drastically limited compared with classical engineering computations. We observe that the high‐order DG method applied to shallow water flows around bluff bodies with poor linear boundary representations produces oscillations and spurious eddies. Surprisingly those eddies may have the right size and intensity but may be generated by numerical diffusion and are not always mathematically relevant. Although not interested in solving accurately the boundary layers of an island, we show that a high‐order boundary representation is mandatory to avoid non‐physical eddies and spurious oscillations. It is then possible to parametrize accurately the subgrid‐scale processes to introduce the correct amount of diffusion in the model. The DG results around the Rattray island are eventually compared with current measurements and reveal good agreement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Discontinuous Galerkin (DG) methods have shown promising results for solving the two‐dimensional shallow water equations. In this paper, the classical Runge–Kutta (RK) time discretisation is replaced by the eigenvector‐based reconstruction (EVR) that allows the second‐order time accuracy to be achieved within a single time‐stepping procedure. Moreover, the EVRDG approach yields stable solutions near drying and wetting fronts, whereas the classical RKDG approach yields instabilities. The proposed EVRDG technique is compared with the original RKDG approach on various test cases with analytical solutions. The EVRDG solutions are shown to be as accurate as those obtained with the RKDG scheme. Besides, the EVRDG scheme is 1.6 times faster than the RKDG method. Simulating dambreaks involving dry beds confirms that EVRDG scheme gives correct solutions, whereas the RKDG method yields instabilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, we focus on the applicability of spectral‐type collocation discontinuous Galerkin methods to the steady state numerical solution of the inviscid and viscous Navier–Stokes equations on meshes consisting of curved quadrilateral elements. The solution is approximated with piecewise Lagrange polynomials based on both Legendre–Gauss and Legendre–Gauss–Lobatto interpolation nodes. For the sake of computational efficiency, the interpolation nodes can be used also as quadrature points. In this case, however, the effect of the nonlinearities in the equations and/or curved elements leads to aliasing and/or commutation errors that may result in inaccurate or unstable computations. By a thorough numerical testing on a set of well known test cases available in the literature, it is here shown that the two sets of nodes behave very differently, with a clear advantage of the Legendre–Gauss nodes, which always displayed an accurate and robust behaviour in all the test cases considered.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Discontinuous Galerkin (DG) methods are very well suited for the construction of very high‐order approximations of the Euler and Navier–Stokes equations on unstructured and possibly nonconforming grids, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods, a high‐order spectral element DG approximation of the Navier–Stokes equations coupled with a p‐multigrid solution strategy based on a semi‐implicit Runge–Kutta smoother is considered here. The effectiveness of the proposed approach in the solution of compressible shockless flow problems is demonstrated on 2D inviscid and viscous test cases by comparison with both a p‐multigrid scheme with non‐spectral elements and a spectral element DG approach with an implicit time integration scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we introduce and test the enhanced stability recovery (ESR) scheme. It is a robust and compact approach to the computation of diffusive fluxes in the framework of discontinuous Galerkin methods. The scheme is characterized by a new recovery basis and a new procedure for the weak imposition of Dirichlet boundary conditions. These features make the method flexible and robust, even in the presence of highly distorted meshes. The implementation is simplified with respect to the original recovery scheme (RDG1x). Furthermore, thanks to the proposed approach, a robust implementation of p‐adaptive algorithms is possible. Numerical tests on unstructured grids show a convergence rate equal to p + 1, where p is the reconstruction order. Comparisons are shown with the original recovery scheme RDG1x and the widely used BR2 method. Results show a significantly larger stability region for the proposed discretization when explicit Runge–Kutta time integration is employed. Interestingly, this advantage grows quickly when the reconstruction order is increased. The proposed procedure for the weak imposition of Dirichlet boundary conditions does not need the introduction of ghost cells, and it is truly local because it does not require data exchange with other elements. It can be easily used with curvilinear wall elements. Several test cases are considered. They include some benchmark tests with the heat equation and compressible Navier–Stokes equations, with test cases designed also to evaluate the behaviour of the scheme with very stretched elements and separated flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The paper deals with the use of the discontinuous Galerkin finite element method (DGFEM) for the numerical solution of viscous compressible flows. We start with a scalar convection–diffusion equation and present a discretization with the aid of the non‐symmetric variant of DGFEM with interior and boundary penalty terms. We also mention some theoretical results. Then we extend the scheme to the system of the Navier–Stokes equations and discuss the treatment of stabilization terms. Several numerical examples are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper comprises an implementation of a fourth‐order Runge–Kutta discontinuous Galerkin (RKDG4) scheme for computing the open‐channel flow equations. The main features of the proposed methodology are simplicity and easiness in the implementation, which may be of possible interest to water resources numerical modellers. A version of the RKDG4 is blended with the Roe Riemann solver, an adaptive high‐order slope limiting procedure, and high‐order source terms approximations. A comparison of the performance of the proposed method with lower‐order RKDG models is performed showing a benefit of considering the RKDG4 model. The scheme is applied to computerize the Saint Venant system by considering benchmark tests that have exact solutions. Finally, numerical results are illustrated discussing the performance of the proposed high‐order model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 1019–1031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
When simulating free‐surface flows using the finite element method, there are many cases where the governing equations require information which must be derived from the available discretized geometry. Examples are curvature or normal vectors. The accurate computation of this information directly from the finite element mesh often requires a high degree of refinement—which is not necessarily required to obtain an accurate flow solution. As a remedy and an option to be able to use coarser meshes, the representation of the free surface using non‐uniform rational B‐splines (NURBS) curves or surfaces is investigated in this work. The advantages of a NURBS parameterization in comparison with the standard approach are discussed. In addition, it is explored how the pressure jump resulting from surface tension effects can be handled using doubled interface nodes. Numerical examples include the computation of surface tension in a two‐phase flow as well as the computation of normal vectors as a basis for mesh deformation methods. For these examples, the improvement of the numerical solution compared with the standard approaches on identical meshes is shown. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号