首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choline chloride–based ionic liquid Ethaline were employed as the supporting electrolyte, graphene (GE) nanosheet was prepared with ultrasonic wave assisted electrodeposition for the first time. Scanning electron microscope results indicated that flower‐like GE nanosheets were obtained at the electrode surface. Energy dispersive X–ray spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition of the flower‐like GE nanosheets. Electrochemical methods showed that the flower‐like GE nanosheets based sensor exhibited high electrocatalytic activity for ascorbic acid (AA) oxidation and can be potentially used for the sensitive amperometric sensing of AA. Amperometric experiments showed that the sensor displayed broad linearity from 0.25 μM to 2.0 mM with a relative low detection limit of 0.1 μM (S/N = 3).  相似文献   

2.
A nickel hydroxide (Ni(OH)2)/3D‐graphene composite is used as monolithic free‐standing electrode for enzymeless electrochemical detection of glucose. Ni(OH)2 nanoflakes are synthesized by using a simple solution growth procedure on 3D‐graphene foam which was grown by chemical vapor deposition (CVD). The pore structure of 3D‐graphene allows easy access to glucose with high surface area, which leads to glucose detection with an ultrahigh sensitivity of 3.49 mA mM?1 cm?2 and a significant lower detection limit up to 24 nM. Cyclic voltammetry (CV) and potentionstatic mode is used for non‐enzymatic glucose sensing. The impedance and effective surface area have been studied well. The high sensitivity, low detection limit and simple configuration of Ni(OH)2/three dimensional (3D)‐graphene composite electrodes can evoke its industrial application in glucose sensing devices.  相似文献   

3.
A novel flower like 3D nickel/manganese dioxide (Ni/MnO2) nanocomposite was synthesized by a kind of simple electrochemical method and the formation mechanism of flower like structure was also researched. In addition, morphology and composition of the nanocomposite were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). Then the Ni/MnO2 nanocomposites were applied to fabricate electrochemical non‐enzymatic glucose sensor. The electrochemical investigation for the sensor indicated that it possessed an excellent electrocatalytic property for glucose, and could applied to the quantification of glucose with a linear range from 2.5×10?7 to 3.5×10?3 M, a sensitivity of 1.04 mA mM?1 cm?2, and a detection limit of 1×10?7 M (S/N=3). The proposed sensor also presented attractive features such as interference‐free, and long‐term stability. The present study provided a general platform for the one‐step synthesis of nanomaterials with novel structure and can be extended to other optical, electronic and magnetic nanocompounds.  相似文献   

4.
A nanocomposite gel with a uniform porous structure and well‐controlled compositions prepared by mixing three‐dimensional graphene material with an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, is used for nitric oxide detection. It shows a fast response of less than 4 seconds, an excellent sensitivity of 11.2 µA cm−2 (µmol/L)−1 and an extremely low detection limit of 16 nM with a signal‐to‐noise ratio of 3 (S/N=3), a performance superior to that of reported works based on carbon nanotubes and nanoparticles. The high sensitivity is attributed to the large electroactive surface area of the graphene gel nanocomposite towards nitric oxide oxidation. The electrochemical behavior of the gel nanocomposite is investigated and explained.  相似文献   

5.
In present work, the ionic liquid, 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide was incorporated in the carbon paste electrode as the binder (IL‐CPE). O‐anisidine (OA) monomer is electropolymerized in the presence of an aqueous acidic solution onto IL‐CPE (POA/IL‐CPE). The as‐prepared substrate is used as a porous matrix for dispersion of Ni(II) ions by immersing the modified electrode in a nickel(II) nitrite solution. The modified electrodes are characterized by scanning electron microscopy (SEM) and electrochemical methods. The POA/IL‐CPE was applied successfully to highly efficient (current density of 18.2 mA cm?2) electrocatalytic oxidation of formaldehyde in alkaline medium. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.  相似文献   

6.
This paper describes a highly sensitive and label‐free electrochemical immunosensor for the detection of 1‐pyrenebutyric acid (PBA) which is based on a graphene (GS), chitosan (CS), and ionic liquid (IL) composite modified glassy carbon electrode (GS‐CS‐IL/GCE). The modification process was monitored by transmission electron microscopy (TEM) and cyclic voltammetry (CV). Due to the synergistic effects of GS, CS, and IL, the biosensor exhibits excellent selectivity to PBA. The current response of the proposed immunosensor decreases linearly at two concentration ranges from 0.01 to 5 and from 5 to 150 ng mL?1 with a detection limit of 0.01 ng mL?1.  相似文献   

7.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity.  相似文献   

8.
Gold‐copper alloy nanoparticles (AuCu NPs) were electrodeposited on a graphene – ionic liquid composite film (EGN‐IL). The AuCu NPs showed high electrocatalysis to the oxidation of hydrazine with a catalytic reaction rate constant of about 5.0×104 mol/Ls. In phosphate buffer solutions (pH 6.8) the oxidation current of hydrazine at 0.15 V (vs. SCE) at the resulting electrode (AuCu? EGN‐IL/GCE) was linear to its concentration in the range of 0.2–110 µM with a sensitivity of 56.7 µA/mM, and the detection limit was 0.1 µM (S/N=3). The electrode was successfully applied to the determination of waste water.  相似文献   

9.
Carbon paste electrode made of graphite and ionic liquid n‐octylpyridinum hexafluorophosphate (OPFP) displays many attractive electroanalytical abilities towards lots of species, allowing sensitive, low‐potential, simple, low‐cost, and stable performances. Herein a new hypothesis is proposed to explain the formation of these performances based on the results of electrochemical, scanning electron microscopic and transmission electron microscopic investigations. The mechanical force produces mono‐ or multi‐layered graphene during the grinding process. And the OPFP molecules are prone to combine with the graphene, which cause the avoidance of the agglomeration of the exfoliated flakes. The presence of graphene, which is edge plane characteristic, provides high density of electrochemical reactive sites on the surface of the electrode.  相似文献   

10.
In this paper a Mg2Al‐Cl layered double hydroxide (Mg2Al‐LDH) modified carbon ionic liquid electrode (CILE) was prepared and further used for the electrochemical detection of rutin. Cyclic voltammograms of rutin on Mg2Al‐LDH/CILE were recorded with a pair of well‐defined redox peaks appeared in pH 2.5 phosphate buffer solution, which was ascribed to the electrochemical reaction of rutin. Due to the presence of Mg2Al‐LDH on the electrode surface, the redox peak currents increased greatly and the electrochemical parameters were calculated. Under the optimal conditions the oxidation peak current was proportional to rutin concentration in the range from 0.08 μmol L‐1 to 800.0 μmol L‐1 with the detection limit on 0.0255 μmol L‐1 (3σ). The fabricated electrode showed good reproducibility and stability, which was successfully applied to rutin tablet samples determination.  相似文献   

11.
The hydrodechlorination performance of nickel complex catalysts, Ni[phen]2(PF6)2 and Ni[bpy]3(PF6)2, were investigated with [Bmim]Br as the ionic liquid solvent. It is proved that Ni[phen]2(PF6)2 is efficient for the hydrodechlorination of aryl chlorides under mild conditions with water as the hydrogen source. The hydrogen source of reaction is from the water which was confirmed by the deuterium incorporation experiments. Recycling experiments showed a decreasing activity of this catalyst due to a small leaching of nickel complex from the ionic liquid phase during the recycling process where n‐heptane was used as the extractant. A plausible reaction route has been suggested.  相似文献   

12.
A simple, fast and cheap method of preparation of solid contact nitrate ion‐selective electrode is proposed. The electrode membrane phase consist of only three components: PVC, plasticizer and ionic liquid (IL).The ionic liquid trihexyltetradecylphosphonium chloride is used in triple function as ionophore, as lipophilic ionic component in order to reduce membrane resistance, and as transducer media in order to stabilize the potential of internal Ag/AgCl electrode. The electrical properties of the membrane were studied by electrochemical impedance spectroscopy and the influence of the interfacial water film was evaluated by potentiometric water layer test.  相似文献   

13.
We reported a molecular dynamics simulation study of a mixture of 1-octyl-3-methylimidazolium hexa-fluoroborate([C8MIN]+[PF6]-), an ionic liquid, and pristine graphene. Our simulations were performed under various conditions, including several temperatures and distances between graphene plates. By studying the liquid structure of the ionic-liquid graphene mixture, we found that the transition for the ionic liquids entering the middle of two graphene plates should occur within 1.00 and 1.50 nm in the temperature range studied(300-600 K). We also studied the pair correlations between the graphene plates and the head and tail of the cation and the anion. Our study at the molecular level can aid in understanding the detailed molecular structure of the mixture.  相似文献   

14.
High‐performance electrodes for in vivo electrochemical detection of glucose (GO) are highly desirable. In this work, we propose a new approach to efficiently and precisely prepare a Au nanowire array electrode (ANAE) with a line width of 78 nm and a large sensor area of 60 mm×60 mm for GO detection. In this approach three techniques, i.e., vacuum sputtering‐deposition, holography photolithography, and argon ion‐beam etching, are integrated. The fabricated ANAE exhibits good performance for GO detection. A linear amperometric response to the oxidation of GO in a concentration range of 0.4–10 mM is observed. The ANAE is characterized by its high detection sensitivity, selectivity, stability and good biocompatibility. All of these make it a promising tool for GO detection and other relevant applications.  相似文献   

15.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

16.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

17.
The article describes the preparation of supported nickel nanoparticles (NiNPs) by partial reduction of Ni,Co‐layered double hydroxide (NiCo‐LDH). The nanocomposites were characterized by X‐ray diffraction and their morphology and composition were characterized by scanning electron microscopy and transmission electron microscopy. The electrochemical properties of the nanocomposite were explored by cyclic voltammetry and amperometry, which revealed significant electrocatalytic behavior towards the oxidation of glucose. The resulted non‐enzymatic glucose sensor has a linear response to glucose in the 5.0 μM to 14.8 mM concentration range, a low detection limit of 1.6 μM, high sensitivity, and excellent selectivity.  相似文献   

18.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

19.
镍氢氧化物修饰玻碳电极的制备及其电化学行为   总被引:4,自引:0,他引:4  
采用一种新方法———镀膜/循环伏安法成功制备了镍氢氧化物修饰玻碳电极。考察了影响镍氢氧化物膜电催化活性的因素,确定最佳富集时间为2min,最佳富集电位为-1.4V。讨论了成膜过程及机理。膜氧化峰电流及催化氧化峰电流均受扩散控制。制得的镍氢氧化物膜修饰电极具有相当的稳定性,并对H2O2的电氧化表现出较高的电催化活性。该电极对H2O2响应的线性范围为1.71×10-5~1.33×10-2mol/L,检出限为2.86×10-6mol/L(S/N=3)。  相似文献   

20.
An ionic liquid functionalized graphene film was prepared and PdAu nanoparticles (NPs) were electrodeposited on it. The PdAu NPs were characterized by various methods and they showed the features of alloys. In 0.2 M H2SO4 solution, oxalic acid (OA) exhibited a sensitive anodic peak at the resulting electrode at about 1.1 V (vs. SCE), and the peak current was linear to OA concentration in the range of 5–100 µM with a sensitivity of 45.5 µA/mM. The detection limit was 2.7 µM (S/N=3). The electrode was successfully applied to the determination of OA in real sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号