首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The fast pulling ligand (FPL) out of binding cavity using non‐equilibrium molecular dynamics (MD) simulations was demonstrated to be a rapid, accurate and low CPU demand method for the determination of the relative binding affinities of a large number of HIV‐1 protease (PR) inhibitors. In this approach, the ligand is pulled out of the binding cavity of the protein using external harmonic forces, and the work of pulling force corresponds to the relative binding affinity of HIV‐1 PR inhibitor. The correlation coefficient between the pulling work and the experimental binding free energy of shows that FPL results are in good agreement with experiment. It is thus easier to rank the binding affinities of HIV‐1 PR inhibitors, that have similar binding affinities because the mean error bar of pulling work amounts to . The nature of binding is discovered using the FPL approach. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
pH‐responsive molecular tweezers have been proposed as an approach for targeting drug‐delivery to tumors, which tend to have a lower pH than normal cells. We performed a computational study of a pH‐responsive molecular tweezer using ab initio quantum chemistry in the gas‐phase and molecular dynamics (MD) simulations in solution. The binding free energy in solution was calculated using steered MD. We observe, in atomistic detail, the pH‐induced conformational switch of the tweezer and the resulting release of the drug molecule. Even when the tweezer opens, the drug molecule remains near a hydrophobic arm of the molecular tweezer. Drug release cannot occur, it seems, unless the tweezer is in a hydrophobic environment with low pH. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Molecular dynamics (MD) simulations were performed for cucurbit[6]uril (CB6) methyl and cyclohexyl derivatives in aqueous solutions. Furthermore, MD simulations have been conducted to study the inclusion complexes between each CB6 derivative with α,ω-pentane diammonium ion (NH3+(CH2)5NH3+) to estimate the binding free energies, the complex geometries and the intermolecular forces responsible for complex formation. Results show a complete inclusion of the guest molecule in the cavity of the host for all complexes. Results also indicate that the guest dynamics inside the cavity of the substituted host is similar to that for the unsubstituted host. This demonstrates that the molecular recognition of the host is not affected by the alkyl substitution at the equator. Also, there is an insignificant conformational change of the macrocyclic structure upon inclusion of the guest. Molecular mechanics/Poisson Boltzmann surface area method was used to estimate the binding free energy of each complex. Results indicate that host–guest electrostatic interactions make the largest contribution to the complex binding free energy. Moreover, van der Waals interactions add significantly to the complex stability. The guest molecules show more or less similar binding free energies with the substituted CB6 that exhibits slightly more negative values than unsubstituted CB6 which is proved also by umbrella sampling.  相似文献   

4.
Understanding binding mechanisms between enzymes and potential inhibitors and quantifying protein – ligand affinities in terms of binding free energy is of primary importance in drug design studies. In this respect, several approaches based on molecular dynamics simulations, often combined with docking techniques, have been exploited to investigate the physicochemical properties of complexes of pharmaceutical interest. Even if the geometric properties of a modeled protein – ligand complex can be well predicted by computational methods, it is still challenging to rank with chemical accuracy a series of ligand analogues in a consistent way. In this article, we face this issue calculating relative binding free energies of a focal adhesion kinase, an important target for the development of anticancer drugs, with pyrrolopyrimidine‐based ligands having different inhibitory power. To this aim, we employ steered molecular dynamics simulations combined with nonequilibrium work theorems for free energy calculations. This technique proves very powerful when a series of ligand analogues is considered, allowing one to tackle estimation of protein – ligand relative binding free energies in a reasonable time. In our cases, the calculated binding affinities are comparable with those recovered from experiments by exploiting the Michaelis – Menten mechanism with a competitive inhibitor.  相似文献   

5.
The binding of a ligand to a receptor is often associated with the displacement of a number of bound water molecules. When the binding site is exposed to the bulk region, this process may be sampled adequately by standard unbiased molecular dynamics trajectories. However, when the binding site is deeply buried and the exchange of water molecules with the bulk region may be difficult to sample, the convergence and accuracy in free energy perturbation (FEP) calculations can be severely compromised. These problems are further compounded when a reduced system including only the region surrounding the binding site is simulated. To address these issues, we couple molecular dynamics (MD) with grand canonical Monte Carlo (GCMC) simulations to allow the number of water to fluctuate during an alchemical FEP calculation. The atoms in a spherical inner region around the binding pocket are treated explicitly while the influence of the outer region is approximated using the generalized solvent boundary potential (GSBP). At each step during thermodynamic integration, the number of water in the inner region is equilibrated with GCMC and energy data generated with MD is collected. Free energy calculations on camphor binding to a deeply buried pocket in cytochrome P450cam, which causes about seven water molecules to be expelled, are used to test the method. It concluded that solvation free energy calculations with the GCMC/MD method can greatly improve the accuracy of the computed binding free energy compared to simulations with fixed number of water.  相似文献   

6.
We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with the weighted histogram analysis method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse‐grained (CG) force field (MARTINI) is less prone to significant error induced by inadequate‐sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3–4 residue peptide segments while leaving the remaining peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and reliably estimate the binding free energy between an arbitrary peptide and an MHC class II molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.  相似文献   

8.
The existence of a network of structured waters in the vicinity of the bimetallic site of Cu/Zn‐superoxide dismutase (SOD) has been inferred from high‐resolution X‐ray crystallography. Long‐duration molecular dynamics (MD) simulations could enable to quantify the lifetimes and possible interchanges of these waters between themselves as well as with a ligand diffusing toward the bimetallic site. The presence of several charged or polar ligands makes it necessary to resort to second‐generation polarizable potentials. As a first step toward such simulations, we benchmark in this article the accuracy of one such potential, sum of interactions between fragments Ab initio computed (SIBFA), by comparisons with quantum mechanics (QM) computations. We first consider the bimetallic binding site of a Cu/Zn‐SOD, in which three histidines and a water molecule are bound to Cu(I) and three histidines and one aspartate are bound to Zn(II). The comparisons are made for different His6 complexes with either one or both cations, and either with or without Asp and water. The total net charges vary from zero to three. We subsequently perform preliminary short‐duration MD simulations of 296 waters solvating Cu/Zn‐SOD. Six representative geometries are selected and energy‐minimized. Single‐point SIBFA and QM computations are then performed in parallel on model binding sites extracted from these six structures, each of which totals 301 atoms including the closest 28 waters from the Cu metal site. The ranking of their relative stabilities as given by SIBFA is identical to the QM one, and the relative energy differences by both approaches are fully consistent. In addition, the lowest‐energy structure, from SIBFA and QM, has a close overlap with the crystallographic one. The SIBFA calculations enable to quantify the impact of polarization and charge transfer in the ranking of the six structures. Five structural waters, which connect Arg141 and Glu131, are endowed with very high dipole moments (2.7–3.0 Debye), equal and larger than the one computed by SIBFA in ice‐like arrangements (2.7 D).  相似文献   

9.
The possibility of estimating equilibrium free‐energy profiles from multiple non‐equilibrium simulations using the fluctuation–dissipation theory or the relation proposed by Jarzynski has attracted much attention. Although the Jarzynski estimator has poor convergence properties for simulations far from equilibrium, corrections have been derived for cases in which the work is Gaussian distributed. Here, we examine the utility of corrections proposed by Gore and collaborators using a simple dissipative system as a test case. The system consists of a single methane‐like particle in explicit water. The Jarzynski equality is used to estimate the change in free energy associated with pulling the methane particle a distance of 3.9 nm at rates ranging from ~0.1 to 100 m s?1. It is shown that although the corrections proposed by Gore and collaborators have excellent numerical performance, the profiles still converge slowly. Even when the corrections are applied in an ideal case where the work distribution is necessarily Gaussian, performing simulations under quasi‐equilibrium conditions is still most efficient. Furthermore, it is shown that even for a single methane molecule in water, pulling rates as low as 1 m s?1 can be problematic. The implications of this finding for studies in which small molecules or even large biomolecules are pulled through inhomogeneous environments at similar pulling rates are discussed.  相似文献   

10.
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (~7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.  相似文献   

11.
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl‐tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l ‐tyrosine (l ‐Tyr), compared to the analogs d ‐Tyr, p‐acetyl‐, and p‐azido‐phenylalanine (ac‐Phe, az‐Phe). We simulate l ‐ and d ‐Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous “MD/GBSA” procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l ‐Tyr, ac‐ and az‐Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l ‐Tyr or d ‐Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l ‐Tyr is the ligand and a d ‐Tyr specific mutant when d ‐Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

13.
The nonequilibrium work relation allows for the calculation of equilibrium free energy differences between states based on the exponential average of accumulated work from irreversible transitions. Here, we compare two distinct approaches of calculating free energy surfaces from unidirectional single-molecule pulling experiments: the stiff spring approximation and the Hummer-Szabo method. First, we perform steered molecular dynamics simulations to mechanically stretch the model peptide deca-alanine using harmonic potentials with different spring stiffnesses and at various constant pulling velocities. We then calculate free energy surfaces based on the two methods and their variants, including the first and second cumulant expansion of the exponentially weighted work and the Gaussian position approximation for the delta function in Hummer and Szabo's expression. We find that with large harmonic force constants, the second cumulant expansion performs well in conjunction with either the stiff spring approximation or the Hummer-Szabo method. When interpreting dynamic force spectroscopy (pullings at different speeds), the second cumulant expansion of the stiff spring approximation performs the best when pulling velocities are similar, but variants of the Hummer-Szabo perform the best when they are spread over a large spectrum. While these conclusion are not definitive for all systems, the insights should prove useful for scientists interpreting nonequilibrium pulling experiments.  相似文献   

14.
In this effort in the SAMPL6 host–guest binding challenge, a combination of molecular dynamics and quantum mechanical methods were used to blindly predict the host–guest binding free energies of a series of cucurbit[8]uril (CB8), octa-acid (OA), and tetramethyl octa-acid (TEMOA) hosts bound to various guest molecules in aqueous solution. Poses for host–guest systems were generated via molecular dynamics (MD) simulations and clustering analyses. The binding free energies for the structures obtained via cluster analyses of MD trajectories were calculated using the MMPBSA method and density functional theory (DFT) with the inclusion of Grimme’s dispersion correction, an implicit solvation model to model the aqueous solution, and the resolution-of-the-identity (RI) approximation (MMPBSA, RI-B3PW91-D3, and RI-B3PW91, respectively). Among these three methods tested, the results for OA and TEMOA systems showed MMPBSA and RI-B3PW91-D3 methods can be used to qualitatively rank binding energies of small molecules with an overbinding by 7 and 37 kcal/mol respectively, and RI-B3PW91 gave the poorest quality results, indicating the importance of dispersion correction for the binding free energy calculations. Due to the complexity of the CB8 systems, all of the methods tested show poor correlation with the experimental results. Other quantum mechanical approaches used for the calculation of binding free energies included DFT without the RI approximation, utilizing truncated basis sets to reduce the computational cost (memory, disk space, CPU time), and a corrected dielectric constant to account for ionic strength within the implicit solvation model.  相似文献   

15.
Clathrates have been proposed for use in a variety of applications including gas storage, mixture separation and catalysis due to the potential for controlled guest diffusion through their porous lattices. Here molecular dynamics simulations are employed to study guest transport in clathrates of hydroquinone (HQ) and Dianin’s compound (DC). Systems investigated were HQ with methanol and acetonitrile, and DC with methanol and ethanol. Simulations were set up with one guest in the pore, two guests in the pore and one vacancy in the pore and a filled pore, and free‐energy barriers for movement between cavities of the pore were estimated for all cases. Comparison between these simulations indicates that guest transport most likely proceeds by molecules moving from full to empty cavities consecutively, one by one, rather than in a concerted manner. Thus, the presence of empty cavities is very important for guest transport, which becomes more energetically demanding in fully loaded systems. Flexibility of the host can assist guest transport. In the studied DC clathrates transport occurs via an intermediate conformation in which the hydroxyl group of the alcohol guest molecule participates in the hydrogen‐bonded ring of the host. We also address the issue of the number of methanol guest molecules that DC accommodates, for which conflicting information exists. We found that this is likely to be temperature dependent and suggest that under some conditions the system is most likely non‐stoichiometric.  相似文献   

16.
We present results showing the importance of appropriate treatment of atomic masses in molecular dynamics (MD)-based single topology free-energy perturbations (FEPs) on small molecule systems. The reversibility of gas phase simulations is significantly improved by scaling the atomic mass of mutated atoms with the lambda variable normally used for the scaling of energy terms. Because this effect is less pronounced for solvated systems, it will not cancel in estimates of the relative hydration free energy difference. The advantage of mass scaling is demonstrated by a null mutation of ethane to ethane and the calculation of the relative hydration free energy difference between ethane and n-propane. Furthermore, it is found that the simulation time necessary for converged MD/FEPs is prohibitively large for relative hydration free energy calculations on cyclic alkanes. Therefore, we explore an alternative free energy pathway including strongly constrained conformations to improve convergence in FEP simulations of flexible molecules.  相似文献   

17.
Damien Thompson 《Chemphyschem》2007,8(11):1684-1693
Molecular recognition between guest ink molecules and beta-cyclodextrin (beta-CD) cavities at self-assembled monolayers provides a molecular printboard for nanopatterning applications. We recently used molecular dynamics (MD) simulations to describe the specificity of ink-printboard binding and here extend the simulations to include charged cyclodextrin hosts, necessary to broaden the chemistry of molecular printboards and bind charged inks such as the ferrocenium cation. Shifting to high pH, or alternatively grafting a charged sidearm onto beta-CD, created three distinct types of anionic beta-CD cavity and we used electronic structure calculations and MD simulations to measure host-guest charge transfer and binding strengths. We find that steric recognition of uncharged organic molecules is retained at the charged printboards, and that improved guest-host electrostatic contacts can strengthen binding of larger inks while penalising small inks, enhancing the level of discrimination. A prudent choice of complementary host-guest shape and charge states thus provides a means of tuning both ink binding strength and specificity at molecular printboards.  相似文献   

18.
In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

19.
Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments.  相似文献   

20.
We propose a free energy calculation method for receptor–ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host–guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein–ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号