首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microanalytical methods offer attractive characteristics for rapid microbial detection and concentration. There is a growing interest in the development of microscale separation techniques. Dielectrophoresis (DEP), a nondestructive electrokinetic transport mechanism, is a technique with great potential for microbe manipulation, since it can achieve concentration and separation in a single step. DEP is the movement of particles due to polarization effects in nonuniform electric fields. The majority of the work on dielectrophoretic manipulation of microbes has employed alternating current fields in arrays of microelectrodes, an approach with some disadvantages. An alternative is to employ insulator-based DEP (iDEP), a dielectrophoretic mode where nonuniform fields are produced by employing arrays of insulating structures. This study presents the concentration and fractionation of a mixture of bacteria and yeast cells employing direct current-iDEP in a microchannel containing an array of cylindrical insulating structures. Negative dielectrophoretic trapping of both types of microorganisms was demonstrated, where yeast cells exhibited a stronger response, opening the possibility for dielectrophoretic differentiation. Simultaneous concentration and fractionation of a mixture of both types of cells was carried out analogous to a chromatographic separation, where a dielectropherogram was obtained in less than 2 min by applying an electric field gradient and achieving concentration factors in the order of 50 and 37 times the inlet concentration for Escherichia coli and Saccharomyces cerevisiae cells, respectively. Encouraging results were also obtained employing a sample of water taken from a pond. The findings demonstrated the great potential of iDEP as a rapid and effective technique for intact microorganism concentration and separation.  相似文献   

2.
In a microbiological device, cell or particle manipulation and characterization require the use of electric field on different electrodes in several configurations and shapes. To efficiently design microelectrodes within a microfluidic channel for dielectrophoresis focusing, manipulation and characterization of cells, the designer will seek the exact distribution of the electric potential, electric field and hence dielectrophoresis force exerted on the cell within the microdevice. In this paper we describe the approach attaining the analytical solution of the dielectrophoretic force expression within a microchannel with parallel facing same size electrodes present on the two faces of channel substrates, with opposite voltages on the pair electrodes. Simple Fourier series mathematical expressions are derived for electric potential, electric field and dielectric force between two distant finite‐size electrodes. Excellent agreement is found by comparing the analytical results calculated using MATLAB? with numerical ones obtained by Comsol. This analytical result can help the designer to perform simple design parametric analysis. Bio‐microdevices are also designed and fabricated to illustrate the theoretical solution results with the experimental data. Experiments with red blood cells show the dielectrophoretic force contour plots of the analytical data matched to the experimental results.  相似文献   

3.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

4.
This study presents the dielectrophoretic (DEP) assembly of multi‐walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT‐coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti‐mouse IgG surfaces.  相似文献   

5.
The gentle and careful in vitro processing of live cells is essential in order to make them available to future therapeutic applications. We present a protocol for the activation of single-T cells based on the contact formation with individual anti-CD3/anti-CD28 presenting microbeads in a lab-on-chip environment. The chips consist of microfluidic channels and microelectrodes for performing dielectrophoretic manipulation employing a.c. electric fields. The dielectrophoretic guiding elements allow the assembly of cell-bead pairs while avoiding ill-defined physical contacts with their environment. After overnight cultivation of the manipulated cells, 77% of the bead-associated T cells expressed the activation marker molecule CD69. Physiological stress on the cells was shown to be mainly due to the single-cell cultivation and not to the manipulation in the chips. The same approach could be useful for the in vitro regulation of stem cell differentiation.  相似文献   

6.
Dielectrophoresis is a versatile tool for the sorting, immobilization, and characterization of cells in microfluidic systems. The performance of dielectrophoretic systems strongly relies on the configuration of microelectrodes, which produce a nonuniform electric field. However, once fabricated, the microelectrodes cannot be reconfigured to change the characteristics of the system. Here, we show that the reorientation of the microfluidic channel with respect to the microelectrodes can be readily utilized to alter the characteristics of the system. This enables us to change the location and density of immobilized viable cells across the channel, release viable cells along customized numbers of streams within the channel, change the deflection pattern of nonviable cells along the channel, and improve the sorting of viable and nonviable cells in terms of flow throughput and efficiency of the system. We demonstrate that the reorientation of the microfluidic channel is an effective tool to create versatile dielectrophoretic platforms using the same microelectrode design.  相似文献   

7.
Dielectrophoresis (DEP) is the motion of particles due to polarization effects in nonuniform electric fields. DEP has great potential for handling cells and is a non-destructive phenomenon. It has been utilized for different cell analysis, from viability assessments to concentration enrichment and separation. Insulator-based DEP (iDEP) provides an attractive alternative to conventional electrode-based systems; in iDEP, insulating structures are used to generate nonuniform electric fields, resulting in simpler and more robust devices. Despite the rapid development of iDEP microdevices for applications with cells, the fundamentals behind the dielectrophoretic behavior of cells has not been fully elucidated. Understanding the theory behind iDEP is necessary to continue the progress in this field. This work presents the manipulation and separation of bacterial and yeast cells with iDEP. A computational model in COMSOL Multiphysics was employed to predict the effect of direct current-iDEP on cells suspended in a microchannel containing an array of insulating structures. The model allowed predicting particle behavior, pathlines and the regions where dielectrophoretic immobilization should occur. Experimental work was performed at the same operating conditions employed with the model and results were compared, obtaining good agreement. This is the first report on the mathematical modeling of the dielectrophoretic response of yeast and bacterial cells in a DC-iDEP microdevice.  相似文献   

8.
Park J  Kim B  Choi SK  Hong S  Lee SH  Lee KI 《Lab on a chip》2005,5(11):1264-1270
An efficient 3D-asymmetric microelectrode system for high-throughput was designed and fabricated to enhance sorting sensitivities to the dielectric properties-size, morphology, conductivity, and permittivity-of living cells. The principle of the present system is based on the use of the relative strengths of negative dielectrophoretic and drag forces, as in a conventional 3D-microelectrode system. Whereas the typical 3D-microelectrode system has a constant electric field magnitude due to the constant width of the microelectrodes and a fixed gap between face-to-face microelectrodes, the present 3D-asymmetric microelectrode system has electric fields of continuously varying magnitudes along the transverse direction of a channel owing to the changing widths of the electrodes in the half-circular shaped cross section of the microchannel. Thus, varying dielectric forces are generated, leading to increased sorting sensitivity through differentially induced forces to definitely distinct cell types. Numerical analysis verified the improved sensitivity of the present system for sorting living cells. The feasibility of using the newly fabricated system under experimental conditions was tested by demonstrating that a mixed population of mouse P19 embryonic carcinoma (EC) and red blood cells (RBCs) was effectively sorted to different wells depending on their respective relative physical properties.  相似文献   

9.
3-D electrode designs for flow-through dielectrophoretic systems   总被引:3,自引:0,他引:3  
Park BY  Madou MJ 《Electrophoresis》2005,26(19):3745-3757
Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to nabla|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3-D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3-D shapes. In this paper, the use of 3-D electrode designs for high-throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3-D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3-D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3-D electrode designs that are simple extensions of 2-D designs are presented, and two novel electrode designs that are not based on 2-D electrode designs are introduced. Finally, a proof-of-concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.  相似文献   

10.
This study presents a new DEP manipulation technique using a movable liquid electrode, which allows manipulation of particles by actively controlling the locations of electrodes and applying on–off electric input signals. This DEP system consists of mercury as a movable liquid electrode, indium tin oxide (ITO)‐coated glass, SU‐8‐based microchannels for electrode passages, and a PDMS medium chamber. A simple squeezing method was introduced to build a thin PDMS layer at the bottom of the medium chamber to create a contactless DEP system. To determine the operating conditions, the DEP force and the friction force were analytically compared for a single cell. In addition, an appropriate frequency range for effective DEP manipulation was chosen based on an estimation of the Clausius–Mossotti factor and the effective complex permittivity of the yeast cell using the concentric shell model. With this system, we demonstrated the active manipulation of yeast cells, and measured the collection efficiency and the dielectrophoretic velocity of cells for different AC electric field strengths and applied frequencies. The experimental results showed that the maximum collection efficiency reached was approximately 90%, and the dielectrophoretic velocity increased with increasing frequency and attained the maximum value of 10.85 ± 0.95 μm/s at 100 kHz, above which it decreased.  相似文献   

11.
Dielectrophoresis is an effective method for capturing nanoparticles and assembling them into nanostructures. The frequency of the dielectrophoretic alternating current (ac) electric field greatly influences the morphology of resultant nanoparticle assemblies. In this study, frequency regimes associated with specific gold nanoparticle assembly morphologies were identified. Gold nanoparticles suspended in water were captured by microelectrodes at different electric field frequencies onto thin silicon nitride membranes. The resultant assemblies were examined by transmission electron microscopy. For this system, the major frequency-dependent influence on morphology appears to arise not from the Clausius-Mossotti factor of the dielectrophoretic force itself, but instead from ac electroosmotic fluid flow and the influence of the electrical double layer at the electrode-solution interface. Frequency regimes of technological interest include those forming one-dimensional nanoparticle chains, microwires, combinations of microwires and nanoparticle chains suitable for nanogap electrode formation, and dense three-dimensional assemblies with very high surface area.  相似文献   

12.
Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.  相似文献   

13.
Rapid and accurate purification of various heterogeneous mixtures is a critical step for a multitude of molecular, chemical, and biological applications. Dielectrophoresis has shown to be a promising technique for particle separation due to its exploitation of the intrinsic electrical properties, simple fabrication, and low cost. Here, we present a geometrically novel dielectrophoretic channel design which utilizes an array of localized electric fields to separate a variety of unique particle mixtures into distinct populations. This label‐free device incorporates multiple winding rows with several nonuniform structures on to sidewalls to produce high electric field gradients, enabling high locally generated dielectrophoretic forces. A balance between dielectrophoretic forces and Stokes’ drag is used to effectively isolate each particle population. Mixtures of polystyrene beads (500 nm and 2 μm), breast cancer cells spiked in whole blood, and for the first time, neuron and satellite glial cells were used to study the separation capabilities of the design. We found that our device was able to rapidly separate unique particle populations with over 90% separation yields for each investigated mixture. The unique architecture of the device uses passivated‐electrode insulator‐based dielectrophoresis in an innovative microfluidic device to separate a variety of heterogeneous mixture without particle saturation in the channel.  相似文献   

14.
Kadaksham J  Singh P  Aubry N 《Electrophoresis》2005,26(19):3738-3744
We experimentally study the transient clustering behavior of viable yeast cells in a dilute suspension suddenly subjected to a nonuniform alternating current (AC) electric field of a microelectrode device. The frequency of the applied electric field is varied to identify two distinct regimes of positive dielectrophoresis. In both regimes, the yeast cells eventually cluster at electrodes' edges, but their transient behavior as well as their final arrangement is quite different. Specifically, when the frequency is much smaller than the cross-over frequency, the nearby yeast cells quickly rearrange in well-defined chains which then move toward the electrodes' edges and remain aligned as elongated chains at their final location. However, when the frequency is close to the cross-over frequency, cells move individually toward the regions of collection and simply agglomerate along the electrodes' edges. Our analysis shows that in the first regime both the dielectrophoretic (DEP) force and the mutual DEP force, which arises due to the electrostatic particle-particle interactions, are important. In the second regime, on the other hand, the DEP force dominates.  相似文献   

15.
The dielectrophoretic (DEP) behavior of individual yeast cells (5-7 microm in diameter) in aqueous media was observed in a fabricated planar quadrupole microelectrode with a working area of 100 microm in diameter by an optical microscope. The yeast cells migrated in the radial direction in the working area. The DEP velocity of the cells increased as they approached the electrode. The DEP trajectory of the cells was analyzed with a theoretical equation derived previously, and the dielectrophoretic mobility was determined. The dielectrophoretic mobility was found to be affected by the viability of cells, the conductivity of the medium, and the binding of lectin protein (concanavalin A) to the cell surface. These DEP behaviors were analyzed based on the permittivities and conductivities of the cell interior and wall, and those of the medium.  相似文献   

16.
Hu N  Yang J  Yin ZQ  Ai Y  Qian S  Svir IB  Xia B  Yan JW  Hou WS  Zheng XL 《Electrophoresis》2011,32(18):2488-2495
A high-throughput cell electrofusion microfluidic chip has been designed, fabricated on a silicon-on-insulator wafer and tested for in vitro cell fusion under a low applied voltage. The developed chip consists of six individual straight microchannels with a 40-μm thickness conductive highly doped Si layer as the microchannel wall. In each microchannel, there are 75 pairs of counter protruding microelectrodes, between which the cell electrofusion is performed. The entire highly doped Si layer is covered by a 2-μm thickness aluminum film to maintain a consistent electric field between different protruding microelectrode pairs. A 150-nm thickness SiO? film is subsequently deposited on the top face of each protruding microelectrode for better biocompatibility. Owing to the short distance between two counter protruding microelectrodes, a high electric field can be generated for cell electrofusion with a low voltage imposed across the electrodes. Both mammalian cells and plant protoplasts were used to test the cell electrofusion. About 42-68% cells were aligned to form cell-cell pairs by the dielectrophoretic force. After cell alignment, cell pairs were fused to form hybrid cells under the control of cell electroporation and electrofusion signals. The averaged fusion efficiency in the paired cells is above 40% (the highest was about 60%), which is much higher than the traditional polyethylene glycol method (<5%) and traditional electrofusion methods (~12%). An individual cell electrofusion process could be completed within 10 min, indicating a capability of high throughput.  相似文献   

17.
The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius–Mossotti factor, a parameter of crucial importance in dielectrophoretic‐based operations. Particle relative polarization was studied by employing insulator‐based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10–1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics®. Particles of different sizes (100–1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200–1000 Hz), while large particles exhibit negative DEP at lower frequencies (20–200 Hz). These differences in relative polarization can be used for the design of iDEP‐based separations and analysis of particle mixtures.  相似文献   

18.
The separation of nanoparticles from micron size particles in high conductance buffers was achieved using an AC dielectrophoretic (DEP) microarray device with hydrogel over-coated microelectrodes. While nanoparticles could be selectively concentrated into high field regions directly over the platinum microelectrodes, micro-bubbling and electrode darkening was also observed. For similar experiments using un-coated microelectrodes, SEM analysis showed severe erosion of the platinum microelectrodes and fusion of nanoparticles due to the aggressive electrochemistry.  相似文献   

19.
Microfluidic devices with three-dimensional (3-D) arrays of microelectrodes embedded in microchannels have been developed to study dielectrophoretic forces acting on synthetic micro- and nanoparticles. In particular, so-called deflector structures were used to separate particles according to their size and to enable accumulation of a fraction of interest into a small sample volume for further analysis. Particle velocity within the microchannels was measured by video microscopy and the hydrodynamic friction forces exerted on deflected particles were determined according to Stokes law. These results lead to an absolute measure of the dielectrophoretic forces and allowed for a quantitative test of the underlying theory. In summary, the influence of channel height, particle size, buffer composition, electric field, strength and frequency on the dielectrophoretic force and the effectiveness of dielectrophoretic deflection structures were determined. For this purpose, microfluidic devices have been developed comprising pairs of electrodes extending into fluid channels on both top and bottom side of the microfluidic channels. Electrodes were aligned under angles varying from 0 to 75 degrees with respect to the direction of flow. Devices with channel height varying between 5 and 50 microm were manufactured. Fabrication involved a dedicated bonding technology using a mask aligner and UV-curing adhesive. Particles with radius ranging from 250 nm to 12 microm were injected into the channels using aqueous buffer solutions.  相似文献   

20.
Several cell-based biological applications in microfluidic systems require simultaneous high-throughput and individual handling of cells or other bioparticles. Available chip-based tools for contactless manipulation are designed for either high-precision handling of individual particles, or high-throughput handling of ensembles of particles. In order to simultaneously perform both, we have combined two manipulation technologies based on ultrasonic standing waves (USWs) and dielectrophoresis (DEP) in a microfluidic chip. The principle is based on the competition between long-range ultrasonic forces, short-range dielectrophoretic forces and viscous drag forces from the fluid flow. The ultrasound is coupled into the microchannel resonator by an external transducer with a refractive element placed on top of the chip, thereby allowing transmission light microscopy to continuously monitor the biological process. The DEP manipulation is generated by an electric field between co-planar microelectrodes placed on the bottom surface of the fluid channel. We demonstrate flexible and gentle elementary manipulation functions by the use of USWs and linear or curved DEP deflector elements that can be used in high-throughput biotechnology applications of individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号