首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of an external field on photorefractive recording in Sn2P2S6 (SPS) crystals is studied. A large gain factor of more then 15 cm-1 is achieved for a grating spacing of 12 μm at λ=0.9 μm. For an applied field exceeding ±200 V/cm a switching of the beam coupling direction is detected, exhibiting a pronounced hysteresis. Received: 25 October 2000 / Revised version: 18 January 2001 / Published online: 21 March 2001  相似文献   

2.
Glass doped with PbS quantum dots is presented as a saturable absorber (SA) for a passive Q-switching of a diode-pumped 1.9 μm Tm:KYW laser. Output pulses with energy of 44 μJ at a repetition rate of 2.5 kHz with an average output power of 110 mW were obtained. The Q-switching conversion efficiency was 33%. The absorption saturation intensity of the glass doped with PbS quantum dots with a mean radius of 5.2 nm at a wavelength of 2 μm was measured to be 1.5 MW/cm2.  相似文献   

3.
We apply, for the first time to our knowledge, photorefractive grating spectroscopy to obtain not-yet-known data on the anisotropy of the dielectric permittivity of Sn2P2S6. Two independent techniques are used, one based on measurements of the amplitude of the space-charge field grating as a function of grating spacing and the other based on measurements of the grating decay time, also as a function of grating spacing. Both techniques provide close values for the anisotropy, which appears to be well pronounced, a ratio εxxzz≈4 is revealed for two of the three independent components of the dielectric tensor. Our data also allow us to conclude that the charge mobility is nearly isotropic in the same plane, μxxzz≈1. Received: 2 December 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +380-44/265-2359, E-mail: odoulov@iop.kiev.ua  相似文献   

4.
The intensity dependence of the photorefractive response of Sn2P2S6 is studied for the Kr+-laser wavelength of 647 nm and pump-beam intensities of up to 10 W/cm2. A considerable enhancement of the two-beam coupling gain factor with increasing intensity at a grating spacing of ≃1 μm is attributed to a light-induced increase of the effective trap density. The large gain reached at high intensities is applied for the build up of a double phase conjugate mirror with a sub-millisecond switch-on time.  相似文献   

5.
We have theoretically investigated the thermal characteristics of double-channel ridge–waveguide InGaAs/InAlAs/InP quantum cascade lasers (QCLs) using a two-dimensional heat dissipation model. The temperature distribution, heat flow, and thermal conductance (G th) of QCLs were obtained through the thermal simulation. A thick electroplated Au around the laser ridges helps to improve the heat dissipation from devices, being good enough to substitute the buried heterostructure (BH) by InP regrowth for epilayer-up bonded lasers. The effects of the device geometry (i.e., ridge width and cavity length) on the G th of QCLs were investigated. With 5 μm thick electroplated Au, the G th is increased with the decrease of ridge width, indicating an improvement from G th=177 W/K⋅cm2 at W=40 μm to G th=301 W/K⋅cm2 at W=9 μm for 2 mm long lasers. For the 9 μm×2 mm epilayer-down bonded laser with 5 μm thick electroplated Au, the use of InP contact layer leads to a further improvement of 13% in G th, and it was totally raised by 45% corresponding to 436 W/K⋅cm2 compared to the epilayer-up bonded laser with InGaAs contact layer. It is found that the epilayer-down bonded 9 μm wide BH laser with InP contact layer leads to the highest G th=449 W/K⋅cm2. The theoretical results were also compared with available obtained experimentally data.  相似文献   

6.
This paper characterizes holographic scattering and demonstrates its application in determining the kinetic parameters in materials with high transmittance and strong holographic scattering like phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA). We define a polymerization rate parameter which can be determined by the temporal evolution of the scattering losses. Two basic kinetic parameters, quantum yield and molar-absorption coefficient, are obtained by nonlinear fitting the curve of the polymerization rate parameter as a function of the thickness, which are 1.9×10−6 mol/einstein and 2.1×104 cm2/mol for a wavelength of 532 nm respectively. These results improve the understanding of photochemical behaviors and allow us to describe the grating formation in the photopolymer reasonably.  相似文献   

7.
Two-dimensional antireflective periodical microstructures for the IR range are fabricated on the surface of CVD diamond films. These structures are created using an ArF excimer laser (λ=193 nm) and a direct writing scheme consisting of a beam collimator and a microscope objective to focus the beam onto the sample. Two different arrays are investigated. One has a spacing of 3 μm and is produced with single shots and the other one has a spacing of 4 μm and is produced with three shots per spot. The hole depth and shape are measured with an atomic force microscope (AFM). The optical transmittance and the scattering properties of the structure at 10.6 μm are reported for a CO2 laser beam. With a spectrometer further transmission measurements in the range of 5 to 20 μm are performed. Received: 16 September 1999 / Accepted: 11 October 1999 / Published online: 24 March 2000  相似文献   

8.
Performances of a distributed feedback (DFB) organic dye laser were enhanced by introducing an intermediate high refractive index layer of poly(N-vinylcarbazole) (PVCz) laminated between a glass substrate and a laser dye doped active polymer layer. The active layer is consisted of rhodamine 6G and cellulose acetate (CA). Introduction of an intermediate layer allows a single mode lasing. Slope efficiencies of 2.2 and 4.7% and thresholds of 0.3 and 0.14 mJ/cm2/pulse were measured for the waveguides with 1.7 and 3.4 μm active layers, respectively. Furthermore, permanent relief grating on an intermediate layer gave rise to the reduction of the threshold. With increasing in amplitude of the relief grating from 20 to 45 nm, lasing threshold was reduced from 0.18 to 0.04 mJ/cm2/pulse for the waveguide with 1.7 μm active layer. The slope efficiency increased from 3.5 to 4.2%.  相似文献   

9.
Steady-state and time-resolved off-Bragg-angle diffraction experiments are used to determine the structure and the dynamics of photorefractive gratings induced by interband photoexcitation. In potassium niobate, we identify in such gratings basically a two-layer structure. Close to the surface, we find a space-charge electric field generated by a charge modulation stored directly in the bands. This grating component is typically 50 μm thick, the amplitude of the refractive index modulation is larger than 10-4, and the response time is a few μs for resonant intensities of 100 mW cm-2. This component is also robust under non-resonant illumination. Deeper in the crystal, a second holographic layer extends over a few hundreds of μm, its amplitude is smaller, and its slower response time is in the ms range. The mutual phase shift between the grating components is also determined. Received: 23 November 1998 / Revised version: 14 January 1999 / Published online: 12 April 1999  相似文献   

10.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

11.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

12.
Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ=2.94 μm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single shot experiments for particles sized from 1 μm down to 300 nm.  相似文献   

13.
Near-field evanescent wave coupling of various subwavelength grating pairs, using a 1.55 μm infrared semiconductor laser has been demonstrated for use as an optical MEMS sensor. Subwavelength grating pairs were fabricated on both glass and silicon substrates. When coupled together the effective grating period is not subwavelength and can exhibit several diffraction orders. The 1.55 μm infrared source was incident on the coupled pairs and the first-order output intensity was recorded and compared with the output intensity from simulated results. This demonstrated evanescent wave coupling concept can be applied to MEMS systems with nanometer gap separations (e.g., pressure sensors, biosensors, and accelerometers) to allow for subnanometer displacement detection.  相似文献   

14.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

15.
Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm−1, belonging to the ν 1+ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm−1 are optimized for the target conditions of the shock-heated gases (P∼1–2 atm, T∼800–1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600–1200 K) and in non-reactive shock-tube experiments (900–1700 K) using CO2–Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.  相似文献   

16.
We present an approach to generating a tunable orange laser from 0.601 to 0.604 μm based on a quasi-periodically poled superlattice in LiTaO3 and a Q-switched 1.064 μm Nd:YVO4 laser as pump. The orange laser was generated in a cavity by a parametric process cascaded by a frequency mixing with a maximum output of 310 mW using 15 W pump power.  相似文献   

17.
An efficient high-power Ho:YAG laser directly in-band pumped by a recently developed GaSb-based laser diode stack at 1.9 μm is demonstrated. At room temperature a maximum continuous wave output power of 55 W at 2.122 μm and a slope efficiency of 62% with respect to the incident pump power were achieved. For narrow linewidth laser operation a volume Bragg grating was used as output coupler. In wavelength stabilized operation a maximum output power of 18 W at 2.096 μm and a slope efficiency of 30% were obtained. In this case the linewidth is reduced from 1.2 nm to below 0.1 nm. Also spectroscopic properties of Ho:YAG crystals at room temperature are presented.  相似文献   

18.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

19.
We demonstrate a new fiber growth mechanism in a photocurable resin by ultrafast laser illumination. A high-repetition rate (∼1 MHz) ultrafast laser beam at the wavelength of ∼523 nm was focused into an ultraviolet photocurable resin to trigger two-photon photopolymerization process. Time-resolved shadowgraphs and scattered light imaging revealed that the curing commenced in the neighborhood of the geometric focal point of the laser beam and that the fiber growth progressed mostly towards the laser source. The cured fiber was thinner and longer than the profile of the focused laser beam, facilitated by nonlinear propagation and absorption of the ultra-fast laser beam. The achieved aspect ratio of the fiber was higher than 180 with ∼10 μm mean diameter, and the average growth rate was up to ∼2 mm/s.  相似文献   

20.
Nonlinear absorption properties of Co2+:MgAl2O4 crystal   总被引:2,自引:0,他引:2  
The differential absorption spectra of Co2+: MgAl2O4 (MALO) crystal were studied with a picosecond pump-probe technique under excitation of the 4A24T1(4P) and 4A24T1(4F) transitions of the tetrahedral Co2+ ion. The difference spectra of stimulated emission (SE) and excited state absorption (ESA) were derived from the measured differential absorption spectra. The 4T1(4P)→4A2 SE band around 660 nm was observed. The ESA bands were assigned to the 4T24T1(4P) transition and to transitions from the thermally populated 2E(2G) excited state to doublet levels arising from the 2F free-ion level of the tetrahedrally coordinated Co2+ ion. Absorption saturation measurements were performed at 1.34 μm and 1.54 μm. Passive Q-switching of 1.34-μm Nd3+:YAlO3 and 1.54-μm Er3+:glass lasers was realized using the Co2+:MALO crystal as saturable absorber. The Q-switched laser pulses of 38 ns (110 ns) in duration and up to 2.7 mJ (10 mJ) in energy at 1.54 μm (1.34 μm) were obtained. Received: 3 March 1999 / Revised version: 30 June 1999 / Published online: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号