首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Designs, Codes and Cryptography - An $$[n,k,d]_q$$ code is a linear code of length n, dimension k and minimum weight d over the field of order q. It is known that the Griesmer bound is attained for...  相似文献   

2.
For Reed-Solomon codes with block length n and dimension k, the Johnson theorem states that for a Hamming ball of radius smaller than , there can be at most O(n2) codewords. It was not known whether for larger radius, the number of codewords is polynomial. The best known list decoding algorithm for Reed-Solomon codes due to Guruswami and Sudan [Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE Transactions on Information Theory 45 (6) (1999) 1757-1767] is also known to work in polynomial time only within this radius. In this paper we prove that when k<αn for any constant 0<α<1, we can overcome the barrier of the Johnson bound for list decoding of Reed-Solomon codes (even if the field size is exponential). More specifically in such a case, we prove that for Hamming ball of radius (for any c>0) there can be at most number of codewords. For any constant c, we describe a polynomial time algorithm for enumerating all of them, thereby also improving on the Guruswami-Sudan algorithm. Although the improvement is modest, this provides evidence for the first time that the bound is not sacrosanct for such a high rate.We apply our method to obtain sharper bounds on a list recovery problem introduced by Guruswami and Rudra [Venkatesan Guruswami, Atri Rudra, Limits to list decoding Reed-Solomon codes, IEEE Transactions on Information Theory 52 (8) (2006) 3642-3649] where they establish super-polynomial lower bounds on the output size when the list size exceeds . We show that even for larger list sizes the problem can be solved in polynomial time for certain values of k.  相似文献   

3.
The van Lint-Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound to prove the actual minimum distance for a class of dual BCH codes of length q2−1 over Fq. We give cyclic codes [63,38,16] and [65,40,16] over F8 that are better than the known [63,38,15] and [65,40,15] codes.  相似文献   

4.
Starting from a linear [n, k, d] q code with dual distance ${d^{\bot}}$ , we may construct an ${[n - d^\bot, k - d^\bot +1,\geq d]_q}$ code with dual distance at least ${\left\lceil\frac{d^\bot}{q}\right\rceil}$ using construction Y 1. The inverse construction gives a rule for the classification of all [n, k, d] q codes with dual distance ${d^{\bot}}$ by adding ${d^\bot}$ further columns to the parity check matrices of the smaller codes. Isomorph rejection is applied to guarantee a small search space for this iterative approach. Performing a complete search based on this observation, we are able to prove the nonexistence of linear codes for 16 open parameter sets [n, k, d] q , q =  2, 3, 4, 5, 7, 8. These results imply 217 new upper bounds in the known tables for the minimum distance of linear codes and establish the exact value in 109 cases.  相似文献   

5.
We show that any binary (n = 2 k − 3, 2 nk , 3) code C 1 is a cell of an equitable partition (perfect coloring) (C 1, C 2, C 3, C 4) of the n-cube with the quotient matrix ((0, 1, n−1, 0)(1, 0, n−1, 0)(1, 1, n−4, 2)(0, 0, n−1, 1)). Now the possibility to lengthen the code C 1 to a 1-perfect code of length n + 2 is equivalent to the possibility to split the cell C 4 into two distance-3 codes or, equivalently, to the biparticity of the graph of distances 1 and 2 of C 4. In any case, C 1 is uniquely embedable in a twofold 1-perfect code of length n + 2 with some structural restrictions, where by a twofold 1-perfect code we mean that any vertex of the space is within radius 1 from exactly two codewords. By one example, we briefly discuss 2 − (n, 3, 2) multidesigns with similar restrictions. We also show a connection of the problem with the problem of completing latin hypercuboids of order 4 to latin hypercubes.  相似文献   

6.
We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary (n?=?2 m ? 3, 2 n-m-1, 4) code C, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the n-cube into six cells. An arbitrary binary (n?=?2 m ? 4, 2 n-m , 3) code D, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) with six cells. As a corollary, the codes C and D are completely semiregular; i.e., the weight distribution of such codes depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if D is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable.  相似文献   

7.
Received October 9, 1998; accepted in final form May 13, 1999.  相似文献   

8.
9.
Let K(n,1)K(n,1) denote the minimal cardinality of a binary code of length nn and covering radius one. Fundamental for the theory of lower bounds for K(n,1)K(n,1) is the covering excess method introduced by Johnson and van Wee. Let δiδi denote the covering excess on a sphere of radius ii, 0≤i≤n0in. Generalizing an earlier result of van Wee, Habsieger and Honkala showed δp1≥p−1δp1p1 whenever n≡−1n1 (mod pp) for an odd prime pp and δ0=δ1=?=δp2=0δ0=δ1=?=δp2=0 holds. In the present paper we give the new estimation δp1≥(p−2)p−1δp1(p2)p1 instead. This answers a question of Habsieger and yields a “general improvement of the general excess bound” for binary codes with covering radius one. The proof uses a classification theorem for certain subset systems as well as new congruence properties for the δδ-function, which were conjectured by Habsieger.  相似文献   

10.
Under study are the binary codes uniformly packed (in the wide sense) of length n with minimum distance d and covering radius ρ. It is shown that every code of this kind is uniquely determined by the set of its codewords of weights ?n/2? ? ρ, …, ?n/2? + ρ. For odd d, the number of distinct codes is at most
$2^{2^{n - \tfrac{3}{2}\log n + o(log n)} } $
.
  相似文献   

11.
12.
Designs, Codes and Cryptography - In this article, we study locating-dominating codes in binary Hamming spaces $$mathbb {F}^n$$ . Locating-dominating codes have been widely studied since their...  相似文献   

13.
Construction of binary and ternary self-orthogonal linear codes   总被引:1,自引:0,他引:1  
We construct new binary and ternary self-orthogonal linear codes. In order to do this we use an equivalence between the existence of a self-orthogonal linear code with a prescribed minimum distance and the existence of a solution of a certain system of Diophantine linear equations. To reduce the size of the system of equations we restrict the search for solutions to solutions with special symmetry given by matrix groups. Using this method we found at least six new distance-optimal codes, which are all self-orthogonal.  相似文献   

14.
15.
16.
17.
We investigate the weight distribution of random binary linear codes. For 0 < λ < 1 and n pick uniformly at random λn vectors in and let be the orthogonal complement of their span. Given 0 < γ < 1/2 with 0 < λ < h(γ) let X be the random variable that counts the number of words in C of Hamming weight γn. In this paper we determine the asymptotics of the moments of X of all orders .  相似文献   

18.
A lower bound on the size of a set K in PG(3, q) satisfying for any plane of PG(3, q), q4 is given. It induces the non-existence of linear [n,4,n + 1 – q 2]-codes over GF(q) attaining the Griesmer bound for .  相似文献   

19.
In traditional algebraic coding theory the linear-programming bound is one of the most powerful and restrictive bounds for the existence of both linear and non-linear codes. This article develops a linear-programming bound for block codes on finite Frobenius rings. An erratum to this article can be found at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号