首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
本文提出一种考虑界面声散射的室内声脉冲响应的计算机仿真新算法,该算法通过应用动态堆栈和虚拟内存,解决了模拟了中计算可能失运控制的问题,作为例子,文中对二个矩形房间的声脉冲响应进行了仿真。  相似文献   

2.
钻井泥浆声传输函数、衰减和声速的测量   总被引:2,自引:0,他引:2       下载免费PDF全文
本文选用四种不同的钻井泥浆,测量了它们的声传输函数、声速以及声衰减随温度变化等声学特性。结果表明:在测量频段为0.8MHz—4.0MHz范围内,钻井泥浆的声传输函数中衰减系数α与频率的一次方成正比;在上述频段内,泥浆的声速较为稳定,不发生频散现象;选择一种完井液泥浆,从室温28℃加热至50℃,在它由50℃降温至41℃过程中,其声衰减急剧增大;再由41℃降温至28℃,声衰减逐渐减弱;在温度为41℃时声衰减最大,在室温附近声衰减趋于恒定。  相似文献   

3.
4.
有限入射声束在液固界面声反射的数值研究   总被引:1,自引:1,他引:1       下载免费PDF全文
邓明晰 《应用声学》1998,17(4):11-17
采用将有限声束分解为一系列平面波的方法,对液固界面声束的声反射问题进行了数值研究,结果表明,当声束入射角为瑞利疲激角时,反射声速有明显位移;当声束在液固界面“掠射”时,反射声速显著变宽,文中还讨论了束宽对反射声速横截面上声场分布的影响。  相似文献   

5.
如何求解阻尼边界封闭空间中声源点到接收点的低频声传递函数已成为目前小尺度封闭空间可听化技术研究的关键技术,能处理任意形状及复杂边界条件的有限元素法可作为求解该问题的适合方法,以室内声声有源Helmholtz方程及其相应边界方程为基础,本文推导出了用于小尺度阻尼边界封闭空间声传递函数的有限元素求解方法,并编制了相应的计算机程序,在算例中,首先通过与模态叠加法计算结果进行比较,验证了该方法的正确性。最后计算了某型车体内腔中任意两点间声传递函数。  相似文献   

6.
设计了测量距离可调整的头相关传输函数的实验测量方法,并采用人工头进行近场头相关传输函数的测量,建立了高空间分辨率的近场头相关传输函数数据库,为进一步开展双耳听觉的研究和虚拟听觉的应用提供了数据基础。根据实验数据,初步分析了远、近场情况下,距离、仰角、方位角等参量对头相关传输函数的影响规律。  相似文献   

7.
本文采用实验方法初步研究了固井水泥的超声传输函数、声衰减和频率的关系以及含水饱和度对声速和衰减的影响。实验中我们对若干种不同型号、水灰比和固化温度的水泥样品进行了声传输函数测量,测量频段为1.5MHz—4.5MHz。并使用中心频率为1.25MHz探头测量了固井水泥含水饱和度对声速和声衰减的影响。结果表明,在本测量频段内,各种固井水泥的声衰减系数主要与频率一次方成正比。随着固化温度的增加,固井水泥的声衰减系数有增大的趋势,水灰比由40%增至50%时,衰减系数有减小的趋势。固井水泥含水饱和度变化对声衰减影响剧烈,当含水饱和度由100%降至80%时,声衰减增加最快。含水饱和度变化对固井水泥声速度的影响不大。  相似文献   

8.
在宏观介电连续近似下,采用转移距阵方法,研究了三元合金缺陷层对有限超晶格中局域界面光学声子模的影响.在这种有限超晶格结构中,可以清楚地看到所有界面模的演化轨迹.结果表明:存在两类局域模,它们的宏观静电势波函数分别局域在缺陷层和表面层附近,且这些模随着超晶格组分层和缺陷层的相对厚度和介电常数的改变,其局域位置和特性发生显著变化.此外,发现虽然能隙中局域模的数目不守恒,但所有界面模的总数守恒.  相似文献   

9.
用M序列进行材料方向性声散特性的测量,其基本思路是以伪随机M序列作为测试信号利用相关的方法测得系统的脉冲响应,根据直达声和各次反射声到达时间加以相应的窗隔离出散射脉冲信号,再进行方向性对比。本文介绍了测量的基本原理和应注意的问题,并给出了一个具体的测量系统实验典型。  相似文献   

10.
对二维声表面波压电声子晶体在射频段的带隙特性,进行了时域有限差分法(FDTD)理论推导和计算,并提出实验方法对比验证。FDTD计算模型考虑了压电效应,引入周期边界条件以节省计算空间和时间,采用完全匹配层以解决声表面波在截断边界处的虚拟反射问题。实验上分别设计有/无二维压电声子晶体的两种宽频带延迟线结构,测量两种延迟线的传输系数取差值,得到了二维压电声子晶体的带隙;其中通过时域加窗函数保留一次传输信号,进行干扰信号的去除。以铝/128°YX-LiNbO3二维压电声子晶体为例,该FDTD方法、商业有限元软件COMSOL、实验方法均得到了100500 MHz射频段内的多个带隙,三种带隙对比证明了FDTD计算带隙与实验测量带隙一致,比COMSOL计算的计算带隙精度更高。  相似文献   

11.
We incorporated a cell-wise acoustic pressure gradient smoothing operation into the standard compatible finite element method and extended the smoothed finite element method (SFEM) for 2D acoustic problems. This enhancement was especially useful for dealing with the problem of an arbitrary shape with violent distortion elements. In this method, the domain integrals that involve shape function gradients can be converted into boundary integrals that involve only shape functions. Restrictions on the shape elements can be removed, and the problem domain can be discretized in more flexible ways. Numerical results showed that the proposed method achieved more accurate results and higher convergence rates than the corresponding finite element methods, even for violently distorted meshes. The most promising feature of SFEM is its insensitivity to mesh distortion. The superiority of the method is remarkable, especially when solving problems that have high wave numbers. Hence, SFEM can be beneficially applied in solving two-dimensional acoustic problems with severely distorted elements, which, in practice, have more foreground than regularity mesh.  相似文献   

12.
赵越喆  吴硕贤 《应用声学》2000,19(4):35-37,48
本文给出了应用声有限元素法模拟坐席吸声低谷效应的计算模型。该模型首先在时间域计算房间脉冲响应,再通过傅立叶变换得到声压频谱特性。将有限元分析结果与已有的模型实验及大厅实测数据相比较,证明该方法是研究坐席吸声低谷效应的有效手段。  相似文献   

13.
利用有限元方法研究了有限长换能器激发的超声波在套管井多层介质中的传播规律。数值模拟了换能器长度及套管曲率对反射回波的影响。随着换能器长度增加,反射回波频谱谱陷个数由单一向多个变化;套管共振透射窗的反射波相对能量先逐渐减小后振荡变化,较小长度的换能器对套管与水泥环界面的声阻抗区分能力优于较大长度的换能器。随着套管曲率的增大,套管共振透射窗的反射波由单一模式的厚度振动纵波向其他模式波变化。数值模拟结果对超声脉冲反射声波测井仪器的换能器结构优化设计起到了良好的指导作用。  相似文献   

14.
The optimum finite element model in the system consisting of a transparent coating and an opaque substrate is established based on the analysis of two important parameters: meshing size and time step, and the stability of solution. Taking into account the temperature dependence of material properties, the transient temperature and temperature gradient field are obtained. According to the thermoelastic theory, this temperature gradient field can be taken as a buried bulk source to generate ultrasonic wave. The surface acoustic waves (SAWs) are obtained. The influence of the coating thickness on the SAWs is analyzed. The model provides a useful tool for the determination of modes which are generated by a laser source in transparent coating on opaque substrate. The surface skimming longitudinal wave exists for the multiple oscillations and it charges from unipolar waveforms to dipolar.  相似文献   

15.
A three-dimensional finite element method has been implemented to predict the transmission loss of a packed muffler and a parallel baffle silencer for a given frequency range. Iso-parametric quadratic tetrahedral elements have been chosen due to their flexibility and accuracy in modeling geometries with curved surfaces. For accurate physical representation, perforated plates are modeled with complex acoustic impedance while absorption linings are modeled as a bulk media with a complex speed of sound and mean density. Domain decomposition and parallel processing techniques are applied to address the high computational and memory requirements. The comparison of the computationally predicted and the experimentally measured transmission loss shows a good agreement.  相似文献   

16.
Issues concerning the design and use of large-scale silencers are more prevalent today then ever before. With the increased use of large industrial machinery (such as gas turbines) and the increase in public awareness and concern for noise control, the desire to be able to properly design silencers for specific applications is increasing. Even today, most silencer design is performed by simply modifying existing designs without full confidence of the new performance characteristics. Due to the size and expense of these silencers, it would be beneficial to have means to predict the insertion loss (IL) or transmission loss (TL) characteristics at the design stage. To properly accomplish this, many factors such as geometry, absorptive material properties, flow effects, break out noise, and self-generated noise must be considered. The use of the finite element method (FEM) and the boundary element method (BEM) can aid in the prediction and design. This paper examines three of the different methods used in calculation of TL values; namely the “traditional” laboratory method, the 4-pole transfer matrix method and the 3-point method. A comparison of these methods based on such criteria as accuracy, computation time, and ease of use was conducted. In addition, the idiosyncrasies and problems encountered during implementation are presented. The conclusions were that the FEM is better suited for this kind of application and that the 3-point method was the fastest method and was easier to use than the 4-pole method.  相似文献   

17.
Multi-chamber perforated resonator (MCPR) is a kind of typical silencer element which can both attenuate broadband noise and satisfy specific installation requirements. The one-dimensional transfer matrix method (TMM) and finite element method (FEM) are widely used to predict the transmission loss of the resonators. This paper mainly focuses on the comparison between 1D TMM and FEM in which detailed perforation modeling is applied for the acoustic modeling of MCPRs. Five resonators with different acoustic attenuation frequency ranges are built for simulation and test. In order to verify the results of the above methods, a transmission loss test facility is designed based on two-load method. Through adjusting the distance between microphones, the facility’s effective measurement frequency can be changed. The results show that despite of the complex modeling and calculation, FEM with detailed perforation modeling shows good consistency with test results in both frequency and amplitude within entire frequency range. In comparison, TMM is limited by the cut-off frequency when calculating transmission losses. Besides, accuracy of TMM in low frequency range is also affected by perforation conditions. However, TMM is time-saving in calculation and structure optimization. In MCPRs’ development process, TMM can be used to quickly design and optimize structure parameters while FEM can be used to verify the acoustic performance before prototyping.  相似文献   

18.
The edge-based smoothed finite element method (ES-FEM) and the face-based smoothed finite element method (FS-FEM) developed recently have shown great efficiency in solving solid mechanics problems with triangular and tetrahedral meshes. In this paper, a coupled ES-/FS-FEM model is extended to solve the structural-acoustic problems consisting of a plate structure interacting with the fluid medium. Three-node triangular elements and four-node tetrahedral elements are used to discretize the two-dimensional (2D) plate and three-dimensional (3D) fluid, respectively, as they can be generated easily and even automatically for complicated geometries. The field variable in each element is approximated using the linear shape functions, which is exactly the same as that in the standard FEM. The gradient field of the problem is obtained particularly using the gradient smoothing operation over the edge-based and face-based smoothing domains in 2D and 3D, respectively. The gradient smoothing technique can provide a proper softening effect to the model, effectively solve the problems caused by the well-known “overly-stiff” phenomenon existing in the standard FEM, and hence significantly improve the accuracy of the solution for the coupled systems. Intensive numerical studies have been conducted to verify the effectiveness of the coupled ES-/FS-FEM for structural-acoustic problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号