首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fire in a compartment with limited ventilation can cause a significant pressure rise, up to hundreds of Pascal. This is important in practice, as the pressure rise can cause damage or hinder evacuation, but also from the perspective of fire safety science. From the energy balance, taking into account the interaction between compartment pressure, fire dynamics and mechanical ventilation, the importance of the net heat gained per unit time in the gas phase is well recognized. This leads to the need to accurately quantify the heat release rate inside the compartment as a function of time. It is explained that scaling of the transient phenomena is not straightforward. The paper then focuses on numerical simulations, in particular on CFD in the gas phase. An overview is presented of different existing approaches for turbulent combustion modelling in turbulent buoyancy-driven flames with low values of scalar dissipation rate, typical for fire flames. A dynamic approach for modelling turbulent combustion, and the coupling with radiation modelling, is briefly discussed. Extinction and re-ignition are discussed extensively, in the context of reduced ventilation conditions. Finally, low-frequency oscillatory behaviour in mechanically ventilated air-tight compartments is addressed. It is argued that CFD simulations are a very valuable tool to gain further insight in this phenomenon. Suggestions for future research are formulated.  相似文献   

2.
CS2在当今化工等领域占据了重要地位,而CS2火灾污染事故危害性极大。通过研究CS2燃烧火焰光谱辐射以探究其火灾污染特性极为必要。搭建了CS2燃烧火焰光谱测试平台,采用黑体辐射源对VSR仪器进行了标定,通过多用途傅里叶变换(VSR)红外光谱辐射仪测试了5,10和20 cm三种燃烧尺度下CS2燃烧的火焰光谱,并通过热电偶测试了整个燃烧时间段内不同燃烧时刻下的火焰温度,以及在火焰上方安装了烟气分析仪对火焰中的燃烧产物浓度进行监测。测量了CS2整个燃烧时间段内火焰温度,以及不同燃烧时间、不同燃烧尺度下的火焰光谱、燃烧产物组分信息。测试结果表明,CS2火焰中主要含有高温SO2,CO2,CO气体和空气中卷入的H2O分子,并获取了特征污染产物SO2的浓度。由于现有光谱仪测量分辨率有限,室内实验测量的火焰尺度有限,为了能实现火灾在线监测需要建立一个火焰光谱辐射模型来反演CS2火灾时的污染物浓度相关信息。基于HITRAN数据库可知在2.7 μm附近为高温水蒸气的发射峰,4.2 μm附近特征峰为高温CO2气体的发射峰,4.7 μm附近有CO微弱的发射峰,在7.4 μm附近特征峰为高温SO2气体的发射峰,并获得了CS2燃烧时产生的SO2,CO2,CO和H2O气体在火焰燃烧相同温度下的吸收系数,通过计算得到了CS2燃烧时产生的SO2,CO2,CO和H2O混合气体的透过率与发射率,并结合气体辐射传输方程、气体吸收系数等方程,创建了CS2燃烧的火焰光谱辐射模型。利用该光谱辐射模型反演了不同燃烧时间下特征污染产物SO2的浓度,并与实验测得的数据进行了对比分析。结果表明,该模型精度高,可用于燃烧产物浓度的定量化反演,SO2分子含量在燃烧时间20,40,60和80 s时的反演精度分别是89.5%,82.5%,85.6%和86.5%。为遥感反演CS2型大尺度火灾中燃烧产物的浓度奠定基础。  相似文献   

3.
水雾与可燃多孔介质火焰相互作用的实验研究   总被引:2,自引:0,他引:2  
采用非传播扩散火焰形式,研究了固体可燃多孔介质中水雾-火焰的相互作用,探讨了床层厚度、多孔介质粒度以及燃料预燃时间对水雾灭火效果的影响。结果表明,随着预燃时间增长,水雾停止后床层内部可能发生闷烧现象,随着燃料粒度的减小,这种闷烧几率反而降低。这表明,固体火焰与水雾的相互作用有其独特之处。  相似文献   

4.
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier–Stokes (FANS) equation set closed by a buoyancy-modified k-? model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.  相似文献   

5.

A numerical investigation of swirling fire plumes is pursued to understand how swirl alters the plume dynamics and combustion. One example is the ‘fire whirl’ which is known to arise naturally during forest fires. This buoyancy-driven fire plume entrains ambient fluid as heated gases rise. Vorticity associated with a mechanism such as wind shear can be concentrated by the fire, creating a vortex core along the axis of the plume. The result is a whirling fire. The current approach considers the relationship between buoyancy and swirl using a configuration based on fixing the heat release rate of the fire and imposing circulation. Large-eddy methodologies are used in the numerical analyses. Results indicate that the structure of the fire plume is significantly altered when angular momentum is imparted to the ambient fluid. The vertical acceleration induced by buoyancy generates strain fields which stretch out the flames as they wrap around the nominal plume centreline. The whirling fire constricts radially and stretches the plume vertically.(Some figures in this article are in colour only in the electronic version; see www.iop.org)  相似文献   

6.
本文对地铁车站及隧道内火灾通风排烟过程中的空气流动特性进行了数值模拟.对模拟边界提出了简化模型,即当某一个车站发生火灾时,计算区域可以只考虑其两端各一个车站和各两个区间;当某一区间发生火灾时,计算区域只需考虑该区间两端各两个车站和各一个区间.上面两种情况下,所有出入口均可假定为自由边界条件.模拟结果与现场实验结果基本一致.  相似文献   

7.
The general objective of this research is to adapt current combustion modeling capabilities used in computational fluid dynamics solvers to the treatment of under-ventilated compartment fires. More specifically, we consider in the present study two models proposed to describe: diffusion flame extinction due to air vitiation; and the emission of carbon monoxide (CO) and unburnt hydrocarbon (HC) mass in a compartment fire. The flame extinction model is based on a flammability diagram parametrized in terms of vitiated air properties. The CO/HC mass model is based on: a transport equation for fuel mass; a comparison of this fuel mass to a Burke–Schumann chemical-equilibrium expression; and an interpretation of the difference as a measure of incomplete combustion. Both models are implemented into a large eddy simulation solver developed by the National Institute of Standards and Technology, USA. The models performance is tested via detailed comparisons with an experimental database corresponding to reduced-scale compartment fires. The study considers two cases that correspond to different values of the fire room global equivalence ratio and are representative of strikingly different flame behaviors. The comparative tests serve to evaluate the general ability of the models to describe the transition from extinction-free conditions to conditions in which the flame experiences partial or total quenching, as well as the transition from fire regimes with no or little CO emission to regimes that emit hazardous levels.  相似文献   

8.
Fire spread in high rise buildings from floor to floor occurs if flames emerge and extend on the façade of the building to cause ignition in floors above the floor of fire origin. Even though considerable effort has been exerted to address this issue, proposed relations for flame heights and heat fluxes are incomplete and contradictory because the relevant physics have been poorly clarified. By performing numerous experiments in small scale enclosures having various door-like openings and fire locations, the physics and new relations are underpinned for flames on façade emerging from (under-ventilated) ventilation controlled fires at the floor of fire origin. To limit the variables and uncertainties, propane and methane gas burners created controlled (theoretical) heat release rates at the source. Gas temperatures inside the enclosure and at the opening, heat fluxes on the façade wall, flame contours (by a CCD camera) and heat release rates (by oxygen calorimetry) inside and outside the enclosure have been measured. The gas temperatures inside the enclosure were uniform for aspect ratio (length to width) of the enclosure varying from one to three to one. Previous relations for the air inflow and heat release rate inside the enclosure were verified. These flames are highly radiative because soot can be formed at high temperatures inside the enclosure before the combustion gases and the unburned fuel exit the enclosure. Remarkably the efficiency of combustion is one for well over-ventilated and very under-ventilated fires by it dropped to 80% for burning conditions around stoichiometric. The flame height and heat fluxes have been well correlated by identifying new length scales related to the effective area of the outflow and the length after which the flow turns from horizontal to vertical due to buoyancy. The results can be used for engineering calculations for real fires and for validation of new large eddy scale simulation models.  相似文献   

9.
10.
Asphalt materials will be ignited and release significant toxic fumes within tunnel fires. Thus, combustion character- istics of asphalt materials used in road tunnel should be studied in order to limit such an adverse effect. In the present work we study the influence of limestone fillers on combustion characteristics of asphalt mortar by thermogravimetric and kinetic analysis. It is shown that the combustion of asphalt mortar is not just a linear superposition of asphalt and limestone. The limestone will increase the ignition point and the activation energy of the primary volatile release, and will catalyze the char formation from the primary volatile release. Kinetic analysis shows that the primary volatile release stage of asphalt mortar combustion can be explained by a three-dimensional diffusion model, the secondary volatile release and char combustion stage can be explained by a model under the assumption of random nucleation and nuclei growth, whereas the limestone decomposition stage appears to follow the one-dimensional phase boundary model.  相似文献   

11.
通过对火灾过程中各种特征参量进行分析,提出采用CO作为早期火灾探测的探测对象,并在此基础上建立起基于傅里叶变换红外光谱仪的完善试验系统。通过该实验系统进行了大量早期火灾加热阴燃及燃烧试验,经过光谱定量分析得到其各自CO浓度变化数据。在数据分析的基础上通过时间序列分析建模建立起CO浓度数据的二阶自回归模型,提取出表征火灾整体特性的过程特征信息参数1和2。通过相平面分析表明:真假火灾的过程特征信息参数具有明显的区域分布差异性,利用这种特性可以快速将真假火灾分辨出来。大量试验结果证实该探测方法能够在火灾发生早期及时对真假火灾进行有效辨别。  相似文献   

12.
Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported. PACS 42.68.Wt; 89.60.Ec; 92.60.Mt; 92.60.Iq  相似文献   

13.
Twenty years ago, homogeneous-charge spark-ignition gasoline engines (using carburetion, throttle-body-, or port-fuel-injection) were the dominant automotive engines. Advanced automotive engine development remained largely empirical, and stratified-charge direct-injection gasoline-engine production was blocked by lack of robustness in its combustion process [W.G. Agnew, Proc. Combust. Inst. 20 (1984) 1-17]. Today, a wide range of direct-injection gasoline engines are in (or near) production, and combustion science is playing a direct role in advanced gasoline-engine development through the simultaneous application of advanced optical diagnostics, three-dimensional computational fluid dynamics (CFD) modeling, and traditional combustion diagnostics. This paper discusses the use of optical diagnostics and CFD in five gasoline-engine combustion systems: homogeneous spark-ignition port-fuel-injection (PFI), homogeneous spark-ignition direct-injection (DI), stratified wall-guided spark-ignition direct-injection (WG-SIDI), stratified spray-guided spark-ignition direct-injection (SG-SIDI), and homogeneous-charge compression-ignition (HCCI). The emphasis is on WG-SIDI, SG-SIDI, and HCCI engines. Key in-cylinder physical processes (e.g., sprays and vaporization, turbulent fuel-air mixing, wall wetting, ignition and early flame development, turbulent partially premixed flame propagation, and emissions formation) can be visualized, quantified, and optimized through optical engine experiments and CFD-based engine modeling. Outstanding issues for stratified engines include reducing piston wall-wetting, pool fires and smoke in WG-SIDI engines, eliminating intermittent misfires in SG-SIDI engines, and optimizing lean NOx after-treatment systems. HCCI engines require better control of combustion timing and heat-release rate over wide speed/load operating ranges, smooth transitions between operating modes, and individual cylinder sensors and controls. Future directions in optical diagnostics and modeling are suggested to improve our fundamental understanding of important in-cylinder processes and to enhance CFD modeling capabilities.  相似文献   

14.
To study the difference of solid fuel fire characteristics at different altitudes, two series of fire experiments of cardboard boxes filled with shredded office paper were conducted separately in Lhasa (altitude: 3650 m; air pressure: 65 kPa) and Hefei (altitude: 24 m, air pressure: 100.8 kPa), using a specially designed igniter. The measured parameters in the experiments include mass loss and flame axis temperature. Fuel load quantity and configuration were varied in the experiments. The results of the study indicate a likelihood that an ignition will result in smoldering fire at the high altitude. There is also likelihood that incipient phase may occur before the onset of full flaming combustion regardless of the altitude. The fuel mass loss fraction of flaming fires was found to follow a simple form of correlation with time when normalized over the half fuel consumption time, which was found to be inversely proportional to four-third power of the ambient pressure.  相似文献   

15.
铁基添加剂增强细水雾灭火性能的实验研究   总被引:7,自引:0,他引:7  
采用实验模拟的方法,研究了添加氯化亚铁的细水雾在不同添加剂浓度、不同喷头压力下,熄灭不同性质的液体池火的性能。实验结果表明:添加有氯化亚铁的细水雾,其灭火性能发生了显著变化。存在一个最佳的灭火浓度,其对应的灭火时间最短,耗水量最少,灭火效率最高。细水雾喷头的工作压力和燃料的性质也对细水雾的灭火性能有影响:工作压力越大,细水雾的平均灭火时间越短。在相同的实验条件下,细水雾扑灭煤油池火的时间要短于扑灭酒精池火的时间。  相似文献   

16.
The factors exerting a significant influence on the termination of the combustion of natural materials (wood and peat) were studied with the use of synthetic nitrogen- and phosphorus-containing fire retardants with different efficiencies. With the use of a mathematical experimental design method, it was confirmed that the inhibition of gas-phase radical processes by volatile nitrogen-containing products is the predominant process of combustion suppression. It was found that the synergism of the nitrogen–phosphorus flame retardants is determined by their complex action: phosphorus mainly enters into organomineral structures in a the condensed phase, and nitrogen inhibits reactions in a gas phase.  相似文献   

17.
基于MODIS数据的森林火险时空分异规律研究   总被引:2,自引:0,他引:2  
森林火灾严重危害生态环境,引起了全球的高度重视。将从MODIS(MODerate-resolution imaging spectroradiometer)中提取的活动火点与历史火烧痕迹进行比较研究,发现MOD14A1(火掩膜数据产品a daily Level 3 1-km fire hot spot product)中提取的8+9波段适合消防监测,与现场勘察数据相比较吻合度高达0.83。使用MOD14A1中8+9波段结合相关数据对这个区域的长达11年(2000—2010年)的森林火灾发生的时间和空间分析,结果表明:火灾发生频率最多的是春季,秋季次之,夏天概率最低,除非干旱。通过对研究区域黑龙江省分析,针叶林和温带针阔混交林过火面积所占比例分别为53.68%,44%,草原区过火面积较小为2.32%。大兴安岭是主要的燃烧区域,面积达到64.74%,小兴安岭约为23.49%,而其他区域面积不超过5%。且火灾发生的较大部分森林有个平缓的斜坡(≤5°),大部分处于中海拔(200 m≤H≤500 m)。因此,通过卫星遥感对森林火区区域的时间序列分析,阐明火灾活动规律和气候、地形、植被类型的相互关系,有助于预测火灾区域危险性等级。  相似文献   

18.
This article presents an experimental and CFD simulation investigation and analysis on temperature evolution and flame behavior inside compartment with a ceiling vent under ambient wind. Experiments were conducted employing a reduced-scale model containing a cubic fire compartment with a ceiling vent under the external wind generated by a wind tunnel. The temperature of windward and leeward inside compartment as well as the flame behavior were recorded for various vent dimensions, heat release rates and wind speeds for a total of 720 test conditions. Results show that there are two types of fire behavior regimes inside the compartment for relatively small- (Bernoulli flow regime) or large vents (oscillatory exchange flow regime). With a relatively small vent, the flame is located at the center of compartment and the temperatures of windward and leeward are almost the same with or without the ambient wind. Then the flame turns to extinct due to lack of oxygen with increasing of fuel supply. However, with a relatively large vent, there is a flame transition from windward to leeward accompanied by the transition of temperature distribution with increasing of fuel supply when subject to ambient wind. Such extinction and transition mechanisms are interpreted by the aid of CFD simulation of global equivalence ratio and flow/oxygen field inside compartment. The critical heat release rate for the occurrence of flame transition decreases with raising wind speed while increases with vent size. Their complex dependence is found to be well represented in terms of a non-dimensional heat release rate as a function of the wind Froude number, employing the vent area-equivalent characteristic diameter as length scale. These new findings facilitate the understanding of the compartment fire evolution with a ceiling vent subject to ambient wind.  相似文献   

19.
Natural gas (NG) represents a promising low-cost/low-emission alternative to diesel fuel when used in high-efficiency internal combustion engines. Advanced combustion strategies utilizing high EGR rates and controlled end-gas autoignition can be implemented with NG to achieve diesel-like efficiencies; however, to support the design of these next-generation NG ICEs, computational tools, including single- and multi-dimensional simulation packages will need to account for the complex chemistry that can occur between the reactive species found in EGR (including NOx) and the fuel. Research has shown that NOx plays an important role in the promotion/inhibition of large hydrocarbon autoignition and when accounted for in CFD engine simulations, can significantly improve the prediction of end-gas autoignition for these fuels. However, reduced NOx-enabled NG mechanisms for use in CFD engine simulations are lacking, and as a result, the influence of NOx chemistry on NG engine operation remains unknown. Here, we analyze the effects of NOx chemistry on the prediction of NG/oxidizer/EGR autoignition and generate a reduced mechanism of a suitable size to be used in engine simulations. Results indicate that NG ignition is sensitive to NOx chemistry, where it was observed that the addition of EGR, which included NOx, promoted NG autoignition. The modified mechanism captured well all trends and closely matched experimentally measured ignition delay times for a wide range of EGR rates and NG compositions. The importance of C2-C3 chemistry is noted, especially for wet NG compositions containing high fractions of ethane and propane. Finally, when utilized in CFD simulations of a Cooperative Fuels Research (CFR) engine, the new reduced mechanism was able to predict the knock onset crank angle (KOCA) to within one crank angle degree of experimental data, a significant improvement compared to previous simulations without NOx chemistry.  相似文献   

20.
Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号