首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
离散元与有限元结合的多尺度方法及其应用   总被引:11,自引:0,他引:11  
胥建龙  唐志平 《计算物理》2003,20(6):477-482
在深入研究复杂结构和非均质材料冲击响应和破坏机理的过程中,往往遇到多尺度计算问题.提出并建立起离散元与有限元结合的多尺度方法,该方法采用离散元对感兴趣的局部进行细观尺度的模拟,利用有限元进行宏观的模拟,从而节约了计算时间.采用一种特殊的过渡层衔接离散元区和有限元区.将这一方法应用于激光辐照下预应力铝板的破坏响应,并将得到的模拟结果与实验进行了比较.  相似文献   

2.
A finite element model used to simulate the dynamics with continuum and discontinuum is presented. This new approach is conducted by constructing the general contact model. The conventional discrete element is treated as a standard finite element with one node in this new method. The one-node element has the same features as other finite elements, such as element stress and strain. Thus, a general finite element model that is consistent with the existed finite element model is set up. This new model is simple in mathematical concept and is straightforward to be combined into the existing standard finite element code. Numerical example demonstrates that this new approach is more effective to perform the dynamic process analysis in which the interactions among a large number of discrete bodies and continuum objects are included.  相似文献   

3.
A semi-discrete scheme about time for the non-stationary Navier-Stokes equations is presented firstly, then a new fully discrete finite volume element (FVE) formulation based on macroelement is directly established from the semi-discrete scheme about time. And the error estimates for the fully discrete FVE solutions are derived by means of the technique of the standard finite element method. It is shown by numerical experiments that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary Navier-Stokes equations and it is one of the most effective numerical methods among the FVE formulation, the finite element formulation, and the finite difference scheme.  相似文献   

4.
To avoid the complicated and time-consuming computation of curved ray trajectories, a least-squares finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Four cases of radiative heat transfer are examined to verify this least-squares finite element method. Linear and nonlinear graded index are considered. The predicted dimensionless net radiative heat fluxes are determined by the least-squares finite element method and compared with the results obtained by other methods. The results show that the least-squares finite element method is stable and has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium, while the Galerkin finite element method sometimes suffers from nonphysical oscillations.  相似文献   

5.
 阐述了一种离散元与有限元法相结合的计算方法,编制了可应用于细观模拟的二维程序,对受冲击载荷作用的均匀材料和非均匀材料的响应特征进行了计算,并对数值模拟进行了验证。计算结果与理论值较吻合,验证了方法的可行性。  相似文献   

6.
应用离散偶应力单元分析弹性Cosserat介质   总被引:7,自引:0,他引:7  
讨论了平面弹性偶应力问题的有限元方法,提出了离散偶应力单元的理论和构造方法,其特点是独立假设单元的位移和微观转角,偶应力理论中微观转角和宏观转角相等的假设在单元中以离散形式强加.该类单元列式简单,易于编程,且有满意的精度.并构造了一个三角形九自由度离散偶应力单元DCT9(discrete Coss-erat triangular).数值结果表明该单元能够较好地描述Cosserat介质的力学性质.  相似文献   

7.
求解辐射传递的非结构混合有限体积/有限元法   总被引:1,自引:0,他引:1  
本文给了一种适用于任意非结构网格的有限体积/有限元法的混合算法用于求解多维半透明吸收、发射、散射性灰矩形介质内的辐射传递.该方法使用有限元法进行角度离散,有限体积法进行空间离散.与基于辐射传递离散坐标方程的方法不同的是,该方法在迭代求解的过程中,针对每一个空间体元,所有角度方向的辐射强度同时耦合求出.通过两个算例验证了该解法的正确性.  相似文献   

8.
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium.  相似文献   

9.
刘永庆  程荣军  葛红霞 《中国物理 B》2013,22(10):100204-100204
The present paper deals with the numerical solution of the coupled Schrdinger-KdV equations using the elementfree Galerkin(EFG) method which is based on the moving least-square approximation.Instead of traditional mesh oriented methods such as the finite difference method(FDM) and the finite element method(FEM),this method needs only scattered nodes in the domain.For this scheme,a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method.In numerical experiments,the results are presented and compared with the findings of the finite element method,the radial basis functions method,and an analytical solution to confirm the good accuracy of the presented scheme.  相似文献   

10.
To avoid the complicated and time-consuming computation of curved ray trajectories, a discontinuous finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two cases of radiative heat transfer in two-dimensional rectangular gray semitransparent graded index medium enclosed by opaque boundary are examined to verify this discontinuous finite element method. Special layered and radial graded index distributions are considered. The predicted dimensionless net radiative heat fluxes and dimensionless temperature distributions are determined by the discontinuous finite element method and compared with the results obtained by the curved Monte Carlo method in references. The results show that the discontinuous finite element method has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium.  相似文献   

11.
We present the finite difference/element method for a two-dimensional modified fractional diffusion equation. The analysis is carried out first for the time semi-discrete scheme, and then for the full discrete scheme. The time discretization is based on the $L1$-approximation for the fractional derivative terms and the second-order backward differentiation formula for the classical first order derivative term. We use finite element method for the spatial approximation in full discrete scheme. We show that both the semi-discrete and full discrete schemes are unconditionally stable and convergent. Moreover, the optimal convergence rate is obtained. Finally, some numerical examples are tested in the case of one and two space dimensions and the numerical results confirm our theoretical analysis.  相似文献   

12.
Two finite element methods (FEMs), FEDOM1 and FEDOM2 (standing for the first and the second finite element discrete ordinates methods, respectively), are formulated and numerically tested. The reference second-order discrete equation is modified in its scattering terms and is applied to the problems of absorbing/emitting and anisotropically scattering media by using the FEM. Numerical features of the developed FEMs are compared with one of the discrete ordinates interpolation method (DOIM), which uses a finite difference scheme. Prediction results of radiative heat transfer by these two FEMs are compared with reference solutions and verified in three-dimensional enclosures containing participating media. The results of FEDOM1 and FEDOM2 agree well with exact solutions for the problem of absorbing/emitting medium with various range of optical thickness. Generally, the two FEMs show more accurate results than DOIM. And FEDOM1 shows more accurate results than FEDOM2 in most of the test problems. Both of the developed FEMs show reasonable results compared with published Monte Carlo solutions for the tested absorbing/emitting and anisotropically scattering media. Although the FEDOM2 is not as accurate as the FEDOM1, it shows its own advantages that it reduces CPU time and memory space of dependent variable to half.  相似文献   

13.
张锐  唐志平 《计算物理》2009,26(5):743-750
推导耦合过渡区内参变量信息交换的元/网格动量传递多尺度算法,建立离散元与有限元耦合时空多尺度计算模型,并应用于激光辐照下受拉铝板破坏行为的数值模拟中.通过对比有限元计算模型、空间多尺度计算模型与时空多尺度计算模型在激光辐照下受拉铝板破坏算例的模拟结果,验证离散元与有限元耦合时空多尺度计算模型的准确性和数值计算高效率优势.使用该多尺度计算模型从宏观和细观尺度对铝板破坏行为进行数值模拟,模拟结果与实验结果基本一致.  相似文献   

14.
王超  王发杰  谷岩  王晓 《计算物理》2021,38(5):612-622
将局部基本解方法应用于静电场问题的模拟与分析。局部基本解方法是利用控制方程的基本解,基于局部理论和移动最小二乘原理提出的一种无网格算法。相比于有限元和有限差分等传统网格类方法,该方法仅需离散节点,避免了复杂的网格剖分难题。作为一种半解析数值技术,物理问题的基本解被作为插值基函数建立数值离散模型,从而保证了算法的较高精度。此外,与具有全局离散格式的无网格方法相比,局部基本解法更适用于高维复杂几何和大尺度模拟。二维和三维数值试验表明,该方法具有实施方便灵活,计算精度高和计算速度快等优势。为静电场仿真研究开辟新的途径,拓展了局部基本解方法的应用领域。  相似文献   

15.
This paper presents an extension of the least square finite element formulation associated to the discrete ordinates method to solve collimated irradiation problems in frequency domain. The features of the method are shown with a separation of the intensity into its collimated and scattered parts for a better handling of discontinuities due to the boundary conditions of Dirichlet type used in optical tomography applications. Numerical tests are used to gauge the accuracy of the model in both isotropic and anisotropic scattering media, with and without frequency modulation. The results show that the method is accurate compared to some reference solutions.  相似文献   

16.
李佟  王倩  金先龙 《计算物理》2022,39(4):395-402
为了提升离散元法处理连续介质问题的计算效率, 提出一种基于重叠颗粒的离散元分区异步长计算方法来处理连续介质问题。该方法采用颗粒分割将连续介质划分为若干子分区, 各分区采用velocity-Verlet积分格式求解运动方程。相邻分区通过重叠颗粒构成局部耦合区域, 边界数据传递过程中不涉及插值和截断过程。数值算例表明, 该方法在保证高精度的同时有效地降低了计算时间。在实际应用中可以有针对性地将连续介质划分为不同尺度颗粒的分区, 根据问题规模及分区颗粒尺度特性采用不同时间步长, 节省存储空间且大幅提升计算效率。  相似文献   

17.
将比例边界有限元法应用到电机磁场分析计算中,采用加权余量法推导无旋磁场的比例边界有限元方程及其离散格式,给出相邻子域公共边上内部节点磁位求解方法.以具有解析解的电机磁场问题为例进行计算和对比分析,验证离散格式的正确性和比例边界有限元法求解电机磁场的可行性,为该方法在电机磁场问题中的应用打下基础.  相似文献   

18.
侯祥林  郑夕健  张良  刘铁林 《物理学报》2012,61(18):180201-180201
针对薄板弯曲大变形问题, 运用变分原理, 建立了薄板弯曲大变形问题的高阶非线性偏微分方程. 运用有限差分法和动态设计变量优化算法原理, 以离散坐标点的上未知挠度为设计变量, 以离散坐标点的差分方程组构建目标函数, 提出了薄板弯曲大变形挠度求解的动态设计变量优化算法, 编制了相应的优化求解程序. 分析了具有固定边界、均布载荷下的矩形薄板挠度的典型算例. 通过与有限元的结果对比, 表明了本文求解算法的有效性和精确性, 提供了直接求解实际工程问题的基础.  相似文献   

19.
We present a successful hierarchical modeling approach which accounts for interface effects on diffusivity, ignored in classical continuum theories. A molecular dynamics derived diffusivity scaling scheme is incorporated into a finite element method to model transport through a nanochannel. In a 5 nm nanochannel, the approach predicts 2.2 times slower mass release than predicted by Fick’s law by comparing time spent to release 90% of mass. The scheme was validated by predicting experimental glucose diffusion through a nanofluidic membrane with a correlation coefficient of 0.999. Comparison with experiments through a nanofluidic membrane showed interface effects to be crucial. We show robustness of our discrete continuum model in addressing complex diffusion phenomena in biomedical and engineering applications by providing flexible hierarchical coupling of molecular scale effects and preserving computational finite element method speed.  相似文献   

20.
基于对偶混合变分原理的Signorini问题的数值模拟   总被引:1,自引:0,他引:1  
王光辉  王烈衡 《计算物理》2002,19(2):149-154
基于Signorini问题的对偶混合变分形式,提出了一种非协调有限元逼近格式,证明了离散的B-B条件,获得了Raviart-Thomas(k=0)有限元逼近的误差界O(h3/4),并且Uzawa型算法对协调与非协调有限元逼近格式进行了数值求解.根据数值结果的分析和比较,表明应用非协调有限元逼近格式求解更有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号