首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeted synthesis of piezoresponsive small molecules and in-depth understanding of their mechanism is of utmost importance for the development of smart devices. This work reports the synthesis, structure and piezosensitivity of a bola-amphiphile 1,4-bis(pentyloxy)-2,5-bis(2-pyridineethynyl)-benzene ( C5-PPB ). Depending on the rate of compression, two different phases in C5-PPB can be generated. The ambient-pressure α-phase is stable up to 0.8 GPa, beyond which it undergoes an isostructural transformation to β-phase, accompanied by a clearly visible elongation of the crystal. This α-to-β phase transition requires the sample to be compressed slowly. When quickly compressed, phase α persists to about 1.5 GPa, beyond which its amorphization starts, accompanied by the appearance of irregular grooves on the largest faces. Mechanical pressure also affects the optical property of C5-PPB , which shows reversible mechanochromism with a green to cyan transformation in the emission, associated with a 15 nm shift in the maxima. The conductivity of C5-PPB as a direct outcome of its crystal packing has also been studied.  相似文献   

2.
The development of π-extended phosphorus heterocycles has been rapidly increasing because of their unique optoelectronics properties, which are very often considered to be a consequence of special hyperconjugative interactions. However, the latter interactions have primarily been investigated within the five-membered species, phospholes, and they are often conceptually extrapolated to the rest of π-extended phosphorus heterocycles (including six-membered P-heterocycles) despite evident structural differences. Herein, we report, for the first time, a detailed investigation that sheds light on the hyperconjugative effects of a series of phosphorus heterocyclic systems by means of EDA and NBO calculations within a DFT framework. Our results lay the foundations for the future design of π-extended phosphorus heterocycles with improved optoelectronics properties.  相似文献   

3.
Summary: Tailored monomers based on the activated esters of 2,5-dibromo-benzoic and 2,5-dibromobenzene-1-sulfonic acids or 3-substituted 2,5-dibromothiophene suitable for the Suzuki, Yamamoto or Grignard metathesis (GRIM) coupling reactions were synthesized and characterized by the melting point, elemental analysis, 1H NMR, FT IR, and TLC. The Horner-Wadsworth-Emmons reaction was utilized for the preparation of 3-(arylvinyl)-2,5-dibromothiophenes and the 4-nitrophenol or N-hydroxysuccinimide for the preparation of activated esters. A monomer with β-diketone active structure was prepared and characterized as well.  相似文献   

4.
5.
Self-organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self-assembly in π-conjugated molecules based on custom-designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single-crystal X-ray structures were resolved for these OPV synthons and the existence of long-range multiple-arm CH/π interactions was revealed in the crystal lattices. Alignment of these π-conjugated OPVs in the solid state was found to be crucial in producing either right-handed herringbone packing in the crystal or left-handed helices in the liquid-crystalline mesophase. Pitch- and roll-angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self-assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π-conjugated materials.  相似文献   

6.
Russian Journal of Organic Chemistry - The reactions of benzamidine, 4-methyl-, 4-iso-butoxy-, and 4-butoxybenzamidine hydrochlorides with chalcone and substituted chalcones in alcohol in the...  相似文献   

7.
Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5-phosphinine (C5P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki–Miyaura coupling. CPF-1 is a weakly porous polymer glass (72.4 m2 g−1 BET at 77 K) with green fluorescence (λmax=546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co-catalyst at a rate of 33.3 μmol h−1 g−1. These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine-based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light-emitting devices and heterogeneous catalysis.  相似文献   

8.
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.  相似文献   

9.
Cyclotriveratrylene analogues (CTVs) are supramolecular bowl-shaped molecules known for their ability to complex organic and organometallic guests, to form liquid crystals, polymers, or nanostructures. In this Article, we report the synthesis of new cyclotriveratrylene analogues with fluorescence properties in which various electron-withdrawing or π-extended conjugated groups are appended to the wide rim ortho to the methoxy-donating groups. Synthetically, these functionalized CTVs cannot be obtained as CTVs with electron-rich functions by the typical method (i.e., the trimerization of the corresponding benzyl alcohol) but are prepared from a common key intermediate, the C(3)-triiodocyclotriveratrylene (CTV-I(3)), in good yields. Despite the synthetic difficulties encountered due to the presence of three reactive centers, we have demonstrated the possibility of performing Sonogashira coupling and Huisgen cycloaddition reactions directly to the CTV core for the first time. CTVs with π-extended conjugated groups reveal interesting fluorescence profiles. More broadly, this study utilizes CTV-I(3) to introduce novel functionalities into CTVs to keep exploring their potential applications.  相似文献   

10.
Tang  Guofeng  An  Shujie  Zhong  Yaling  Ma  Li  Liu  Qiancai 《Russian Journal of Organic Chemistry》2020,56(10):1779-1783
Russian Journal of Organic Chemistry - A series of novel coronene-based fluorescent materials have been synthesized through well-defined protocol from 1,2-dimethoxybenzene, with the key steps...  相似文献   

11.
Abstract

Novel selenium-containing π-conjugated compounds have been studied for the development of organic metals, superconductors, and field-effect-transistors. Methylenedithiotetraselenafulvalene (MDT-TSF) and its related electron donors are effectively synthesized by the recently developed synthetic method consisting of the one-pot formation of 1,3-diselenole-2-selones, the deprotection/realkylation procedure of the protected tetrachalcogenafulvalene-thiolate and -selenolate, and the ring closing reaction via trans-alkylation on sulfur or selenium atom. These new compounds serve as good electron donors for developing not only highly conducting charge-transfer salts (> 10 3 S cm?1) but also superconducting salts. Among six selenium-containing methylenedichalcogeno-tetrachalcogenafulvalenes, we found that four of them can produce superconducting salts, indicating that the present compounds are superior class of electron donors.

For the development of high-performance organic semiconductors for organic field effect transistor (OFET) devices, we focused our attention to selenophene-containing acene-type compounds, namely benzo[1,2-b:4,5-b′]diselenophene (BDS) derivatives hitherto unknown. A new synthetic method for BDS derivatives consisting of double heterocycle-formation on the central benzene ring has been established and has made it possible to synthesize a range of BDS derivatives. Among them, 2,6-diphenyl derivative (DPh-BDS) shows very high hole mobility of 0.17 cm 2 /Vs, which is classified into the highest class of field-effect mobility of organic thin films.  相似文献   

12.
Two kinds of novel π-conjugated polycyanate esters, namely the plasma-polymerized 4-methoxyphenol cyanate ester (PPMPCE) and the plasma-polymerized 4-phenylphenol cyanate ester (PPPPCE), were successfully prepared by plasma polymerization for the first time. The structure and compositions of both plasma polycyanate esters were investigated by Fourier Transform Infrared (FT-IR), X-ray Photoelectron Spectroscopy (XPS) and UV–Visible Absorption Spectra (UV–Vis). The results show that extensively conjugated C=N double bonds were formed in the plasma-deposited cyanate ester thin films, the plasma polymerization of both monomers proceeded mainly via the opening of π-bonds of the O–C≡N functional groups which are further on being formed into a large π-conjugated system, this unique process is noticeably different from the conventional thermal polymerization reaction of cyanate ester monomers. Further dielectric measurement shows that PPPPCE thin film gives a lower dielectric constant comparing to that of the PPMPCE film, and the dielectric constant of both plasma deposited thin films decreased with an increase in measurement frequency.  相似文献   

13.
14.
15.
π-Conjugated aromatic polymers (πCAPs) are central components of functional materials yet suffer from insolubility without multiple covalent substituents on their backbones. We herein disclose a new strategy for the facile processing of unsubstituted heterocyclic πCAPs (i.e., poly(para-phenylene-2,6-benzobisoxazole) and poly(benzimidazobenzo-phenanthroline)), independent of the polymer length, via non-covalent encircling with aromatic micelles, composed of bent aromatic amphiphiles, in water. The UV/Visible studies reveal that the efficiencies of the present encircling method are ≈10 to 50-fold higher than those using conventional amphiphiles under the same conditions. The AFM and SEM analyses of the resultant aqueous polymer composites show that otherwise insoluble πCAPs form fine bundles (e.g., ≈1 nm in thickness) in the tubular aromatic micelles, through efficient π-stacking interactions. In the same way, pristine poly(para-phenylene) can be dissolved in water, displaying enhanced fluorescence (10-fold), relative to the polymer solid. Two types of unsubstituted πCAPs are likewise co-encircled in water, indicated by UV/Visible analysis. Importantly, aqueous processing of the encircled πCAPs into free-standing single- or multicomponent films with submicrometer thickness is demonstrated through a simple filtration-annealing protocol.  相似文献   

16.
Boron-enriched scaffolds have demonstrated unique features and promising performance in the field of catalysis towards the activation of small gas molecules. However, there is still a lack of facile approaches capable of achieving high B doping and abundant porous channels in the targeted catalysts. Herein, construction of boron- and nitrogen-enriched nanoporous π-conjugated networks (BN-NCNs) was achieved via a facile ionothermal polymerization procedure with hexaazatriphenylenehexacarbonitrile [HAT(CN)6] sodium borohydride as the starting materials. The as-produced BN-NCN scaffolds were featured by high heteroatoms doping (B up to 23 wt. % and N: up to 17 wt. %) and permanent porosity (surface area up to 759 m2 g−1 mainly contributed by micropores). With the unsaturated bonded B species acting as the active Lewis acid sites and defected N species acting as the active Lewis base sites, those BN-NCNs delivered attractive catalytic performance towards H2 activation/dissociation in both gaseous and liquid phase, acting as efficient metal-free heterogeneous frustrated Lewis pairs (FLPs) catalysts in hydrogenation procedures.  相似文献   

17.
正π-Functional materials refer to small molecules and polymers that contain conjugated structures and exhibit interesting electronic and optical properties and may have potential applications.Early applicationsπ-conjugated organic systems can be dated back to eighteen century when organic molecules containing aromatic unites were used as dyes and pigments.The discovery of conducting conjugated polymers by  相似文献   

18.
19.
Vinylene-linked covalent organic frameworks(COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, permanent porosity, ultrahigh chemical stability, and extraordinary optoelectronic properties. Over the past 5 years, this kind of material has been witnessed rapid development either in chemical synthesis or in potential applications. In this review, we summarize the chemistry to synthesize vinylene-linked COFs, especially the synthetic strategies involving activation of aryl methyl groups for condensation reaction. We then scrutinize the state-of-the-art development in properties and functions of this kind of COFs. Our own opinions on the further development of the vinylene-linked COFs are also presented for discussion.  相似文献   

20.
Abstract

π-Donors based on TIT-units have been intensively studied due to their potential use in conducting molecular materials. It therefore appeared of interest to use the readily avaible dithiolate (1) for the syntheses of macrocycles, exemplified by (3) and (4) and the lTF-cage molecules (5) - (7) obtained by intramolecular coupling[1]:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号