首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The space group of alpha(')-NaV2O5 turns below T(c) = 34 K from Pmmn with all V sites equivalent, into Fmm2 with three independent vanadium sites per layer. This is incompatible with models of charge ordering into V4+ and V5+. Our structure determination indicates that the phase transition consists of a charge ordering with three distinct valence states, formally V4+, V4.5+, and V5+. The singlet formation is not associated with dimerization on the spin ladder, but with the formation of spin clusters. Finally, we ascribe the quadrupling of the c axis to the large polarizability of the V2O5 skeleton.  相似文献   

2.
We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T(V). Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T(V) and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite.  相似文献   

3.
We report a systematic enhancement of the pressure dependence of T(N) in A(2+)[V(2)]O(4) spinels as the V-V separation approaches the critical separation for a transition to itinerant-electron behavior. An intermediate phase between localized and itinerant-electron behavior is identified in Zn[V(2)]O(4) and Mg[V(2)]O(4) exhibiting mobile holes as large polarons. Partial electronic delocalization, cooperative ordering of V-V pairs in Zn[V(2)]O(4) below T(s) approximately T(N) and dT(N)/dP<0, signals that lattice instabilities associated with the electronic crossover are a universal phenomenon.  相似文献   

4.

UPtAl exhibits a ferromagnetic ordering of U magnetic moments at temperatures below T C =42.5 K. The magnetic-ordering transition is accompanied by an anomaly in the temperature dependence of electrical resistivity. This allows us to determine the value of Curie temperature from 𝜌 vs. T data that can be measured at very high pressures, at which reliable magnetization measurements are difficult. We report on resistivity measurements performed on an UPtAl single crystal under hydrostatic pressures p h 8 GPa. It was observed that the initial increase of T C with p becomes gradually reduced for p >2 GPa until the maximum T C value of , 48 K is reached between 4 and 6 GPa that is followed by a progressively developing downturn of the T C ( p ) curve. The latter result is attributed to the approaching collapse of the U 5 f -moment ferromagnetism. Low-temperature resistivity data point to a rapidly reduced magnetic anisotropy at highest pressures.  相似文献   

5.
Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) ? as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3).  相似文献   

6.
A controversial issue of the driving force for the phase transition of the one-dimensional (1D) metallic In wires on Si(111) is studied by low-temperature scanning tunneling microscopy and spectroscopy. The energy gap opening and the longitudinal charge ordering through charge transfer at the Fermi level are unambiguously observed. The vacancy defects induce a local charge ordering decoupled from a lattice distortion above T(c), and pin the phase of charge order below T(c). All these results below and above T(c) including the detailed features such as local fluctuations strongly support the 1D charge-density-wave mechanism for the phase transition.  相似文献   

7.
We report the first observation of coherent magnetic excitations in a spin ladder system NaV2O5 by using femtosecond time-domain spectroscopy. A pronounced coherent oscillation is observed at 127 cm(-1) (nearly twice the spin gap energy) and assigned to a two-magnon bound state, based on the temperature dependence of the intensity below the charge ordering phase transition at T(C) = 34 K. This mode can be observable only when circularly polarized light is used as a pump or a probe beam, suggesting that it corresponds to a spin-flip excitation from the singlet ground state. A phonon mode strongly coupled to the spin state is also found at 303 cm(-1).  相似文献   

8.
Double pyrochlore Dy2Ru207 is synthesized and its magnetism and ferroelectricity below the Ru4+ spin ordering temperature (NI00 K) are investigated. The ferroelectric transition appears at -18 K, much higher than the Dy3+ spin ordering point at -1.8 K and lower than the Ru4+ spin ordering point at -100 K. The measured electric polarization at ,-2 K is as big as 145℃/m2 in the polycrystalline samples. It is argued that the ferroelectricity is possibly ascribed to the electric dipole ordering arising from the collective monopole excitations in the Dy3+ tetrahedrons in prior to the Dy3+ spin ordering into spin-ice like state below -1.8 K.  相似文献   

9.

A new compound, SbVO 5 , formed in the V-Sb-O system, has been synthesized and investigated using the electron paramagnetic resonance (EPR) technique. SbVO 5 has been prepared by two methods: by heating equimolar mixtures of V 2 O 5 and f -Sb 2 O 4 in air and by oxidation of the known phase (SbVO 4.5 ) of rutile type obtained in pure argon at temperatures between 550 v C and 650 v C. At room temperature only a weak EPR signal from the powder sample of SbVO 5 was detected corroborating the absence of bulk V(IV) ions in the structure. Comparison with the CuSO 4 reference sample revealed that only 0.02% vanadium ions are EPR active. Intense EPR spectra obtained in the low temperature range, below 100 v K, showed a well resolved hyperfine structure typical of isolated vanadium ions in axial symmetry, present as VO 2+ species, and a broad line attributed to V 4+ -O-V 5+ bonds. The hyperfine structure lines could be analyzed by an axial spin Hamiltonian with g =1.9311, g =1.9425 and A =181 ‐ 10 m 4 v cm m 1 , A =54 ‐ 10 m 4 v cm m 1 . The spectrum recorded at the lowest obtainable temperature T=3.65 v K contains yet another component which is typical of a triplet state indicating the presence of two interacting VO 2+ nuclei with spin 1/2 giving a singlet S=0 and a triplet S=1 state. The appearance of a low-field line (B~1600 v Gs at g , 4) is another diagnostic for the presence of dimeric species and is attributed to the forbidden j M S = - 2 transition.  相似文献   

10.
We report bulk superconductivity (SC) in Eu(0.2)Sr(0.8)(Fe(0.86)Co(0.14))(2)As(2) single crystals by means of electrical resistivity, magnetic susceptibility and specific heat measurements with T(c) is approximately equal to 20 K and an antiferromagnetic (AFM) ordering of Eu(2+) moments at T(N) is approximately equal to 2.0 K in zero field. (75)As NMR experiments have been performed in the two external field directions (H is parallel to ab) and (H is parallel to c). (75)As-NMR spectra are analysed in terms of first-order quadrupolar interaction. Spin-lattice relaxation rates (1/T(1)) follow a T(3) law in the temperature range 4.2-15 K. There is no signature of a Hebel-Slichter coherence peak just below the SC transition, indicating a non-s-wave or s(±) type of superconductivity. In the temperature range 160-18 K 1/T(1)T follows the C/(T+θ) law reflecting 2D AFM spin fluctuations.  相似文献   

11.
A novel structure of orbital ordering is found in a Nd0.5Sr0.5MnO3 thin film, which exhibits a clear first-order transition, by synchrotron x-ray diffraction measurements. Lattice parameters vary drastically at the metal-insulator transition at 170 K (= T(MI)), and superlattice reflections appear below 140 K (= T(CO)). The electronic structure between T(MI) and T(CO) is identified as A-type antiferromagnetic with a d(x2-y2) ferro-orbital ordering. The new type of antiferro-orbital ordering characterized by the wave vector (1/4 1/4 1/2) in cubic notation emerges below T(CO). The accommodation of the large lattice distortion at the first-order phase transition and the appearance of the novel orbital ordering are brought about by the anisotropy in the substrate, a new parameter for the phase control.  相似文献   

12.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

13.
Charge ordering behavior is observed in the crystal prepared through the immersion of the Na0.41CoO2 crystal in distilled water. Discovery of the charge ordering in the crystal with Na content less than 0.5 indicates that the immersion in water brings about the reduction of the Na0.41CoO2. The formal valence of Co changes from +3.59 estimated from the Na content to +3.50, the same as that in Na0.5CoO2. The charge compensation is confirmed to arise from the intercalation of the oxonium ions as occurred in the superconducting sodium cobalt oxide bilayer-hydrate [K. Takada, et al. J. Mater. Chem. 14 (2004) 1448]. The charge ordering is the same as that observed in Na0.5CoO2. It suggests that the Co valence of +3.50 is necessary for the charge ordering.  相似文献   

14.
Magnetite (Fe3O4) is a mixed valent system where electronic conductivity occurs on the B site (octahedral) iron sublattice of the spinel structure. Below T(V)=123 K, a metal-insulator transition occurs which is argued to arise from the charge ordering of 2+ and 3+ iron valences on the B sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B site sublattice (approximately 80 meV) are shifted upwards in energy above T_{V} due to the occurrence of B-B ferromagnetic double exchange in the mixed valent phase. The double exchange interaction affects only spin waves of Delta(5) symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by short-range electron correlations above T(V).  相似文献   

15.
The present resonant x-ray scattering has been performed on a monoclinically split single domain of NaV(2)O(5). The observation of a critically enhanced contrast between V(4+) and V(5+) ions has led us to the unequivocal conclusion of the charge-order pattern of the low-temperature phase of NaV(2)O(5) below T(c) = 35 K. In spite of the possible four types of configuration of the zigzag-type charge-order patterns in the ab plane (A,A',B and B'), the stacking sequence along the c axis is determined as the AAA'A' type by comparison with model calculations.  相似文献   

16.
Yb 3d and valence-band photoemission spectra of the first-order valence-transition compound YbInCu4 have been measured with hard x ray at an excitation energy of 5.95 keV. Abrupt changes are clearly observed in both spectra around the transition temperature T(V)=42 K, in comparison with ultraviolet and soft x-ray photoemission (VUV-PES and SX-PES) spectra. From the Yb 3d spectra, the Yb valence has been estimated to be approximately 2.90 from 220 down to 50 K and approximately 2.74 at 30-10 K. We propose that Yb 3d hard x-ray photoemission spectroscopy is a very powerful method to estimate the valence of Yb with high accuracy. On the other hand, the Yb2+ 4f-derived peaks in the valence-band spectra exhibit a remarkable enhancement below T(V). The shape of the valence-band spectra is different from those of the VUV-PES and SX-PES spectra above T(V), reflecting the In 5s and 5p contributions.  相似文献   

17.
The long-range magnetic ordering of PrMn(2)O(5) has been studied on polycrystalline samples from neutron diffraction and specific heat measurements. The onset of antiferromagnetic ordering is observed at T(N) ≈ 25 K. In the temperature interval 18 K < T < 25 K the magnetic structure is defined by the propagation vector k(1) = (1/2,0,0). Below 18 K, some additional magnetic satellites appear in the NPD patterns, which are indexed with k(2) = (0,0,1/2). Therefore, below 18 K the magnetic structure consists of two independent magnetic domains, defined by the propagation vectors k(1) and k(2). The magnetic structure of the k(1)-domain is given by the basis vectors (C(x),0,0) and (C(x)',0,0) for Mn(4h) and Mn(4f), respectively. In the k(2)-domain, the magnetic structure is defined by the basis vectors (0,0,G(z)) and (F(x)',G(y)',0) for Mn(4h) and Mn(4f), respectively. At T = 1.5 K, for the magnetic phase associated with k(1), the magnetic moments of the Mn atoms at the 4h and 4f sites are 1.82(7) and 1.81(6) μ(B), respectively; for the magnetic phase associated with k(2), the magnetic moments for the Mn(4h) and Mn(4f) atoms are 0.59(5) and 2.62(5) μ(B), respectively.  相似文献   

18.
We report on the observation of ultrafast photoenhanced ferromagnetism in GaMnAs. It is manifested as a transient magnetization increase on a 100 ps time scale, after an initial subpicosecond demagnetization. The dynamic magnetization enhancement exhibits a maximum below the Curie temperature T(c) and dominates the demagnetization component when approaching T(c). We attribute the observed ultrafast collective ordering to the p-d exchange interaction between photoexcited holes and Mn spins, leading to a correlation-induced peak around 20 K and a transient increase in T(c).  相似文献   

19.
Charge disproportionation (CD) and spin differentiation in Na(1/2)CoO2 are studied using the correlated band local-density approximation + Hubbard U (LDA+U) approach. The simultaneous CD and gap opening seen previously is followed in detail through a first-order charge disproportionation transition 2Co(3.5+)-->Co3++Co4+. Disproportionation in the Co a(g) orbital results in half of the ions (Co3+) becoming electronically and magnetically dead, transforming the quarter-filled a(g) system into a half-filled subsystem that subsequently undergoes the observed charge ordering or metal-insulator transition. Comparing with data in the x approximately 0.3 regime suggests the system has moved into the multiband regime where the effective Coulomb repulsion U-->U(eff)=U/sqrt[3] strongly lessens correlation effects.  相似文献   

20.
We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs(2)Al(10) across an anomalous antiferromagnetic ordering temperature (T(0)) of 29 K, using optical conductivity spectra. The spectra along the a and c axes indicate that an energy gap due to the hybridization between conduction bands and nearly local 4f states, namely the c-f hybridization gap, emerges from a higher temperature continuously across T(0). Along the b axis, on the other hand, another energy gap with a peak at 20 meV becomes visible at 39 K (>T(0)) and fully opens at T(0) because of a charge instability. This result implies that the appearance of the energy gap, as well as the change in the electronic structure along the b axis, induces the antiferromagnetic ordering below T(0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号