首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anomalous diffusion is researched within the framework of the coupled continuous time random walk model, in which the space-time coupling is considered through the correlated function g(t) ~ t γ , 0 ≤ γ< 2, and the probability density function ω(t) of a particle’s transition time t follows a power law for large t: ω(t) ~ t ? (1 + α),1 <α< 2. The bi-fractional generalized master equation is derived analytically which can be applied to describe the transient bi-fractional diffusion phenomenon which is induced by the space-time coupling and the asymptotic behavior of ω(t). Numerical results show that for the transient bi-fractional diffusion, there is a transition from one fractional diffusion to another one in the diffusive process.  相似文献   

2.
Wavepackets in quantum mechanics spread and the Universe in cosmology expands. We discuss a formalism where the two effects can be unified. The basic assumption is that the Universe is determined by a unitarily evolving wavepacket defined on space-time. Space-time is static but the Universe is dynamic. Spreading analogous to expansion known from observational cosmology is obtained if one regards time evolution as a dynamical process determined by a variational principle employing Kolmogorov-Nagumo-Rényi averages. The formalism automatically leads to two types of “time” parameters: τ, with dimension of x0, and dimensionless ε = ln??τ, related to the form of diffeomorphism that defines the dynamics. There is no preferred time foliation, but effectively the dynamics leads to asymptotic concentration of the Universe on spacelike surfaces which propagate in space-time. The analysis is performed explicitly in 1 + 1 dimensions, but the unitary evolution operator is brought to a form that makes generalizations to other dimensions and other fields quite natural.  相似文献   

3.
P. Leifer 《JETP Letters》2004,80(5):367-370
State-dependent local dynamical variables (LDVs) sharply differ from the ordinary operators of quantum mechanics. The N-level model system shows the physical importance of such operators in the complex projective Hilbert state space CP(N?1). The process of quantum measurement in terms of LDVs is described.  相似文献   

4.
Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem (QPKC) based on the Bell states. By Holevos theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack (CPA). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.  相似文献   

5.
The cubic non-linear Schrödinger equation where the coefficient of the nonlinear term is a function F(t,x) only passes the Painlevé test of Weiss, Tabor, and Carnevale only for F=(a+bt)?1, where a and b are constants. This is explained by transforming the time-dependent system into the constant-coefficient NLS by means of a time-dependent non-linear transformation, related to the conformal properties of non-relativistic space-time. A similar argument explains the integrability of the NLS in a uniform force field or in an oscillator background.  相似文献   

6.
In the framework of Bohmian quantum mechanics, the Klein–Gordon equation can be seen as representing a particle with mass m which is guided by a guiding wave ?(x) in a causal manner. Here a relevant question is whether Bohmian quantum mechanics is applicable to a non-linear Klein–Gordon equation? We examine this approach for ?4(x) and sine-Gordon potentials. It turns out that this method leads to equations for quantum states which are identical to those derived by field theoretical methods used for quantum solitons. Moreover, the quantum force exerted on the particle can be determined. This method can be used for other non-linear potentials as well.  相似文献   

7.
8.
Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group G. In this paper, we study the geometric quantization of the symplectic quotient M // G. Guillemin and Sternberg [Invent. Math. 67, 515–538 (1982)] have shown, under suitable regularity assumptions, that there is a natural invertible map between the quantum Hilbert space over M //G and the G-invariant subspace of the quantum Hilbert space over M.Reproducing other recent results in the literature, we prove that in general the natural map of Guillemin and Sternberg is not unitary, even to leading order in Planck’s constant. We then modify the quantization procedure by the “metaplectic correction” and show that in this setting there is still a natural invertible map between the Hilbert space over M // G and the G-invariant subspace of the Hilbert space over M. We then prove that this modified Guillemin–Sternberg map is asymptotically unitary to leading order in Planck’s constant. The analysis also shows a good asymptotic relationship between Toeplitz operators on M and on M // G.  相似文献   

9.
We consider two-dimensional Schrödinger operators H(B, V) given by Eq. (1.1) below. We prove that, under certain regularity and decay assumptions on B and V, the character of the expansion for the resolvent (H(B, V) ? λ)?1 as λ → 0 is determined by the flux of the magnetic field B through \({\mathbb{R}^2}\) . Subsequently, we derive the leading term of the asymptotic expansion of the unitary group e ?i t H(B, V) as t → ∞ and show how the magnetic field improves its decay in t with respect to the decay of the unitary group e ?i t H(0, V).  相似文献   

10.
Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.  相似文献   

11.
Already Schrödinger tried to proceed towards a purely wave theory of quantum phenomena. However, he should give up and accept Born’s probabilistic interpretation of the wave function. A simple mathematical fact was behind this crucial decision. The wave function of a composite system S = (S 1, S 2) belongs to the tensor product of two L2 spaces and not to their Cartesian product. It was impossible to consider it as a vector function ψ(x) = (ψ 1(x), ψ 2(x)), xR 3. Here we solved this problem. It is shown that there exists a mathematical formalism that provides a possibility to describe composite quantum systems without appealing to the tensor product of the Hilbert state space, and one can proceed with their Cartesian product. It may have important consequences for the understanding of entanglement and applications to quantum information theory. It seems that “quantum algorithms” can be realized on the basis of classical wave mechanics. However, the interpretation of the proposed mathematical formalism is a difficult problem and needs additional studies.  相似文献   

12.
The paper is devoted to the investigation, using the method of Cartan–Laptev, of the differential-geometric structure associated with a Lagrangian L, depending on a function z of the variables t, x 1,...,x n and its partial derivatives. Lagrangians of this kind are considered in theoretical physics (in field theory). Here t is interpreted as time, and x 1,...,x n as spatial variables. The state of the field is characterized by a function z(t, x 1,..., x n ) (a field function) satisfying the Euler equation, which corresponds to the variational problem for the action integral. In the present paper, the variables z(t, x 1,..., x n are regarded as adapted local coordinates of a bundle of general type M with n-dimensional fibers and 1-dimensional base (here the variable t is simultaneously a local coordinate on the base). If we agree to call t time, and a typical fiber an n-dimensional space, then M can be called the spatiotemporal bundle manifold. We consider the variables t, x 1,...,x n , z (i.e., the variables t, x 1,...,x n with the added variable z) as adapted local coordinates in the bundle H over the fibered base M. The Lagrangian L, which is a coefficient in the differential form of the variational action integral in the integrand, is a relative invariant given on the manifold J 1 H (the manifold of 1-jets of the bundle H). In the present paper, we construct a tensor with components Λ00, Λ0i , Λ ij ij = Λ ji ) which is generated by the fundamental object of the structure associated with the Lagrangian. This tensor is an invariant (with respect to admissible transformations the variables t, x 1,...,x n , z) analog of the energy-momentum tensor of the classical theory of physical fields. We construct an invariant I, a vector G i , and a bivalent tensor G jk generated by the Lagrangian. We also construct a relative invariant of E (in the paper, we call it the Euler relative invariant) such that the equation E = 0 is an invariant form of the Euler equation for the variational action integral. For this reason, a nonvariational interpretation of the Euler equation becomes possible. Moreover, we construct a connection in the principal bundle with base J 2 H (the variety of 2-jets of the bundle H) and with the structure group GL(n) generated by the structure associated with the Lagrangian.  相似文献   

13.
The Green’s function associated with a Klein–Gordon particle moving in a D-dimensional space under the action of vector plus scalar q-deformed Hulthén potentials is constructed by path integration for \({q \geq 1}\) and \({\frac{1}{\alpha} \ln q < r < \infty}\). An appropriate approximation of the centrifugal potential term and the technique of space-time transformation are used to reduce the path integral for the generalized Hulthén potentials into a path integral for q-deformed Rosen–Morse potential. Explicit path integration leads to the radial Green’s function for any l state in closed form. The energy spectrum and the correctly normalized wave functions, for a state of orbital quantum number \({l \geq 0}\), are obtained. Eventually, the vector q-deformed Hulthén potential and the Coulomb potentials in D dimensions are considered as special cases.  相似文献   

14.
We consider a quantum charged particle moving in the xy plane under the action of a time-dependent magnetic field described by means of the linear vector potential A = H(t) [?y(1 + β), x(1 ? β)] /2 with a fixed parameter β. The systems with different values of β are not equivalent for nonstationary magnetic fields due to different structures of induced electric fields, whose lines of force are ellipses for |β| < 1 and hyperbolas for |β| > 1. Using the approximation of the stepwise variation of the magnetic field H(t), we obtain explicit formulas describing the evolution of the principal squeezing in two pairs of noncommuting observables: the coordinates of the center of orbit and relative coordinates with respect to this center. Analysis of these formulas shows that no squeezing can arise for the circular gauge (β = 0). On the other hand, for any nonzero value of β, one can find the regimes of excitations resulting in some degree of squeezing in the both pairs. The maximum degree of squeezing can be obtained for the Landau gauge (|β| = 1) if the magnetic field is switched off and returns to the initial value after some time T, in the limit T → ∞.  相似文献   

15.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.  相似文献   

16.
We generalize (in two natural ways) the C*-algebra generated by matrices of bounded operators in a separable Hilbert space H with a bounded number of nonzero elements in each row and each column, introduced recently by V. Manuilov. We consider the standard C*-Hilbert module HA instead of H = H?. Also we consider the algebras with finiteness conditions only on rows or only on columns. For related general linear groups, we prove the contractibility (Kuiper type theorems) and some other properties.  相似文献   

17.
18.
It is shown how to derive fractional supersymmetric quantum mechanics of order k as a superposition of k-1 copies of ordinary supersymmetric quantum mechanics.  相似文献   

19.
We describe the “Feynman diagram” approach to nonrelativistic quantum mechanics on \({\mathbb{R}^n}\), with magnetic and potential terms. In particular, for each classical path γ connecting points q 0 and q 1 in time t, we define a formal power series V γ (t, q 0, q 1) in \({\hbar}\), given combinatorially by a sum of diagrams that each represent finite-dimensional convergent integrals. We prove that exp(V γ ) satisfies Schrödinger’s equation, and explain in what sense the \({t \to 0}\) limit approaches the δ distribution. As such, our construction gives explicitly the full \({\hbar\to 0}\) asymptotics of the fundamental solution to Schrödinger’s equation in terms of solutions to the corresponding classical system. These results justify the heuristic expansion of Feynman’s path integral in diagrams.  相似文献   

20.
Given some observable H on a finite-dimensional quantum system, we investigate the typical properties of random state vectors \({|\psi\rangle}\) that have a fixed expectation value \({\langle\psi|H|\psi\rangle=E}\) with respect to H. Under some conditions on the spectrum, we prove that this manifold of quantum states shows a concentration of measure phenomenon: any continuous function on this set is almost everywhere close to its mean. We also give a method to estimate the corresponding expectation values analytically, and we prove a formula for the typical reduced density matrix in the case that H is a sum of local observables. We discuss the implications of our results as new proof tools in quantum information theory and to study phenomena in quantum statistical mechanics. As a by-product, we derive a method to sample the resulting distribution numerically, which generalizes the well-known Gaussian method to draw random states from the sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号