首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two alpha-fluoro alpha,beta-unsaturated carbonyl compounds, i.e., benzyl 2-fluoroacrylate (3) and 2-fluorooct-1-en-3-one (4), as well as the corresponding nonfluorinated parent compounds, were synthesized and subjected to Diels-Alder reactions with cyclopentadiene. The cycloadditions were conducted thermally, microwave-assisted, and Lewis acid-mediated (TiCl(4)). The fluorinated dienophiles exhibited a lower reactivity and exo diastereoselectivity, while the corresponding nonfluorinated parent compounds reacted endo selectively. DFT calculations suggest that kinetic effects of fluorine determine the stereoselectivity rather than higher thermodynamic stability of the exo products.  相似文献   

2.
Miura T  Kiyota K  Kusama H  Lee K  Kim H  Kim S  Lee PH  Iwasawa N 《Organic letters》2003,5(10):1725-1728
[reaction: see text] Indium-mediated allenylation of alpha,beta-unsaturated ketones in the presence of tert-butyldimethylsilyl triflate and dimethyl sulfide gives 6-siloxy-1,2,5-trienes, which undergo W(CO)(5)(L)-catalyzed 5-endo cyclization to give the corresponding cyclopentene derivatives in good yield. Furthermore, this novel W(CO)(5)(L)-catalyzed cyclization of allenyl silyl enol ethers proceeds in a 6-endo manner when 5-siloxy-1,2,5-trienes are employed as a substrate. In these reactions, effective electrophilic activation of allenyl compounds for attack by silyl enol ethers is achieved using a catalytic amount of W(CO)(6).  相似文献   

3.
It is difficult to control the enantioselectivity in the protonation of silyl enol ethers with simple chiral Br?nsted acids, mainly due to bond flexibility between the proton and its chiral counterion, the orientational flexibility of the proton, and the fact that the proton sources available are limited to acidic compounds such as chiral carboxylic acids. To overcome these difficulties, we have developed a Lewis acid-assisted chiral Br?nsted acid (LBA) system. The coordination of Lewis acids with Br?nsted acids restricts the orientation of protons and increases their acidity. Optically active binaphthol (BINOL) derivative.SnCl4 complexes are very effective as enantioselective protonation reagents for silyl enol ethers. However, their exact structures have not yet been determined. We describe here optically active 1,2-diarylethane-1,2-diol derivative.SnCl4 as a new type of LBA for the enantioselective protonation as well as its crystallographic structure. A variety of optically active 1,2-diarylethane-1,2-diols could be readily prepared by asymmetric syn-dihydroxylation. This is a great advantage over BINOL for the flexible design of a new LBA. The most significant finding is that we were able to specify the conformational direction of the H-O bond of LBA, which has some asymmetric inductivity, by X-ray diffraction analysis. The stereochemical course in the enantioselective protonation of silyl enol ethers using LBA would be controlled by a linear OH/pi interaction with an initial step. The absolute stereopreference in enantioselective reactions using BINOL.SnCl4 can also be explained in terms of this uniformly mechanistic interpretation.  相似文献   

4.
Condensation of 1-lithio-2-trimethylsiloxyethylene 1 with t-butyl(dimethyl)silyl triflate 2a leads to silylated enol ethers 4a or 4b according to the experimental conditions. The formation of 4b is due to a 1,3-migration of the trimethylsilyl group from oxygen to carbon of 1. Condensation with chlorosilane 2b lead exclusively to 4b.  相似文献   

5.
A variety of functionalized pseudoglycal C-glycosides (C-pseudoglycals or C-hex-2-enopyranosides) have been obtained in excellent yield and stereoselectivity from the trimethylsilyl triflate (Me 3SiOTf) catalyzed reaction of trichloroacetimidate derivative 2 with silylated nucleophiles such as allyl and propargyl silanes and silyl enol ethers.

  相似文献   

6.
Mechanism of Mukaiyama-Michael reaction of ketene silyl acetal has been discussed. The competition reaction employing various types of ketene silyl acetals reveals that those bearing more substituents at the beta-position react preferentially over less substituted ones. However, when ketene silyl acetals involve bulky siloxy and/or alkoxy group(s), less substituted compounds react preferentially. The Lewis acids play an important role in these reactions. Enhanced preference for the more sterically demanding Michael adducts is obtained with Bu(2)Sn(OTf)(2), SnCl(4), and Et(3)SiClO(4) in the former reaction while TiCl(4) gives the highest selectivity for the less sterically demanding products in the latter case. These results are interpreted in terms of alternative reaction mechanisms. The reaction of less bulky ketene silyl acetals are initiated by electron transfer from these compounds to a Lewis acid. On the other hand, bulkier ketene silyl acetals undergo a ubiquitous nucleophilic reaction. Such a mechanistic change is discussed based on a variety of experimental results as well as the semiempirical PM3 MO calculations.  相似文献   

7.
A new strategy using a BINOL derivative as a chiral leaving group and Lewis acid has been developed for enantioselective alkylation of prochiral olefins. (R)-2,2'-Bis[2-(trimethylsilyl)ethoxymethyl]-1,1'-binaphthol is demonstrated to be an effective reagent for enantioselective hydroxymethylation of silyl enol ethers and trisubstituted alkenes. Electrophilic addition to prochiral olefins is accompanied by cleavage of an acetal that is dual activated by SnCl4 and the delta-effect of silicon through the S(N)2 substitution process. Enantioselective synthesis of cyclic terpenes is also described using this strategy.  相似文献   

8.
Diene substituent effects on the regiochemical and stereochemical outcomes of uncatalyzed Diels-Alder reactions of N-alkoxycarbonyl-1,2-dihydropyridines with both styrene and methyl vinyl ketone (MVK) were studied. Alkyl substitution on the diene in all cases examined resulted in a kinetic preference for 7-endo isomers (7-phenyl 51-96% exo and 7-acetyl 54-96% exo). For both dienophiles, the highest stereoselectivities (>or=89% endo) were observed with 5-methyl or 6-methyl substituents in the dihydropyridine. Theoretical calculations of the energies of gas phase endo and exo transition states at the RHF/3-21G(*) predict that total entropy, DeltaStotal, considerations favor endo cycloadducts for both dienophiles with DHP, while total energy considerations, DeltaEo, favor endo cycloadducts for styrene and exo cycloadducts for MVK. At this level, favored endo-phenyl isomers are correctly predicted for styrene reactions, but the calculation of 7-acetyl exo or endo isomer dominance is diene-substituent-dependent for MVK reactions. The preference for endo addition of MVK to the parent, 5-methyl, and 6-methyl-DHPs was successfully predicted by calculations at the B3LYP/6-31G* theory level.  相似文献   

9.
A new method for the preparation of highly substituted cyclohexenones is reported. [2 + 2] Cycloaddition of 2-silyloxydienes with allenecarboxylate affords the 1-alkenyl-3-alkylidenecyclobutanol silyl ethers. Thermolysis of these compounds affords the methylene cyclohexenyl silyl ethers with excellent exo selectivity (>95:5) when monosubstituted alkenyl groups are used, while the use of disubstituted alkenyl groups gives generally low selectivity ( approximately 2:1). However, rearrangement of the anion of the cyclobutanol (prepared by acidic hydrolysis of the TMS silyl ether) at low temperature gives the endo product with good to excellent diastereoselectivity (5-23:1). Two different mechanistic rationales are given for the two different processes: the first via a diradical and the second via a cleavage intramolecular Michael addition. Thus, the same starting material (e.g., 20) can be converted into either the exo or endo product, 22x or 22n, with good diastereocontrol by just changing the rearrangement conditions.  相似文献   

10.
[reaction: see text] An efficient synthesis of highly substituted alpha-arylnaphthalene analogues has been developed utilizing Lewis acid-promoted regiocontrolled benzannulation of aryl(aryl')-2,2-dichlorocyclopropylmethanols (aryl not equal aryl'; abbreviated as AACMs). Both AACM diastereomers were easily prepared via highly stereoselective addition (>95/5) of ArLi to gem-dichlorocyclopropropyl aryl' ketones. The choice of Lewis acids determined the cyclization regioselectivity of the present benzannulation. TiCl4 and SnCl4 used the chelation pathway, whereas silyl triflates used a nonchelation pathway to give unsymmetrically substituted regioisomeric alpha-arylnaphthalenes in 40-91% yields with moderate to excellent regioselectivity (TiCl4 or SnCl4; >99/1-3/1, TBDMSOTf; >1/99-1/4). Thus, the alpha-aryl or alpha-aryl' moiety (accessory aryl group) was alternatively introduced to alpha-arylnaphthalenes by choosing either the order of the reaction sequences or the appropriate catalyst. Application of the present method to the total synthesis for unsymmetrically substituted natural lignan lactones, justicidin B, retrojusticidin B, dehydrodesoxypodophyllotoxin, and a related analogue, 5'-methoxyretrochinensin, was demonstrated. Lignan retrolactones (retrojusticidin B and 5'-methoxyretrochinensin) were synthesized by the conventional lactonization of the diol precursor, whereas a novel Bu2SnO-mediated monoacylation method was applied to the synthesis of normal lignan lactones (justicidin B and dehydrodesoxypodophyllotoxin).  相似文献   

11.
Diaba F  Ricou E  Bonjoch J 《Organic letters》2007,9(14):2633-2636
Bishomoallylic secondary amines embodying the 2-allyl-N-benzylcyclohexylamine unit react with NIS to undergo cyclization through 6-endo processes in either the cis or trans series. Nevertheless, when the resulting cis-3-iododecahydroquinolines are treated with Al2O3, the exo derivatives evolve into octahydroindoles and the endo derivatives keep the same backbone, the configuration being retained in the generated alcohols.  相似文献   

12.
A 1:1 mixture of the platinum dimethyl diimine complex [PhN[double bond]C(Me)C(Me)[double bond]NPh]PtMe(2) (4a) and B(C(6)F(5))(3) catalyzed the cyclization/hydrosilylation of dimethyl dipropargylmalonate (1) and HSiEt(3) to form 1,1-dicarbomethoxy-3-methylene-4-(triethylsilylmethylene)cyclopentane (3) in 82% isolated yield with 26:1 Z:E selectivity. Platinum-catalyzed diyne cyclization/hydrosilylation tolerated a range of functional groups including esters, sulfones, acetals, silyl ethers, amides, and hindered ketones. Diynes that possessed propargylic substitution underwent facile cyclization/hydrosilylation to form silylated 1,2-dialkylidene cyclopentanes as mixtures of regioisomers. Diynes that possessed an electron-deficient internal alkyne underwent cyclization/hydrosilylation in moderate yield to form products resulting from silyl transfer to the less substituted alkyne. The silylated 1,2-dialkylidenecyclopentanes formed via diyne cyclization/hydrosilylation underwent a range of transformations including protodesilylation, Z/E isomerization, and [4 + 2] cycloaddition with dieneophiles.  相似文献   

13.
An intramolecular Li–Si exchange was observed on various lithiated ferrocenylbenzyl silyl ethers. The thermodynamically more stable C‐silylated isomers were isolated in good yields and fully characterized. The reaction mechanism of the [1,4] retro‐Brook rearrangement was investigated by DFT calculations. Two distinct reaction routes were proposed and a possible stabilization effect of the ferrocenyl fragment on the C‐silylated isomers was described. The diastereoselective rearrangement of the trimethylsilyl group to the ortho position of the ferrocenyl cyclopentadienyl ring was also accomplished and the absolute configuration of the product was determined.  相似文献   

14.
1,2-Bis(trimethylsilyl)benzenes are key starting materials for the synthesis of benzyne precursors, Lewis acid catalysts, and certain luminophores. We have developed efficient, high-yield routes to functionalized 4-R-1,2-bis(trimethylsilyl)benzenes, starting from either 1,2-bis(trimethylsilyl)acetylene/5-bromopyran-2-one (2) or 1,2-bis(trimethylsilyl)benzene (1)/bis(pinacolato)diborane. In the first reaction, 5 (R = Br) is obtained through a cobalt-catalyzed Diels-Alder cycloaddition. The second reaction proceeds via iridium-mediated C-H activation and provides 8 (R = Bpin). Besides its use as a Suzuki reagent, compound 8 can be converted into 5 with CuBr(2) in i-PrOH/MeOH/H(2)O. Lithium-bromine exchange on 5, followed by the addition of Me(3)SnCl, gives 10 (R = SnMe(3)), which we have applied for Stille coupling reactions. A Pd-catalyzed C-C coupling reaction between 5 and 8 leads to the corresponding tetrasilylbiphenyl derivative. The bromo derivative 5 cleanly undergoes Suzuki reactions with electron-rich as well as electron-poor phenylboronic acids.  相似文献   

15.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

16.
1-Benzyl ethers of (E)- and (Z)-hex-3-en-1,6-diols and hept-3-en-1,7-diols undergo a smooth oxidative cyclization with DDQ in the presence of In(OTf)(3) through a sequential C-H bond activation and an intramolecular Prins cyclization to afford the corresponding trans- and cis-fused hexahydro-2H-furo[3,2-c]pyrans and octahydropyrano[4,3-b]pyrans respectively in good yields with an excellent stereoselectivity. Aryl tethered homoallylbenzyl ethers such as benzyl ethers of (E)- and (Z)-6-arylhex-3-enyl alcohols undergo a tandem Prins/Friedel-Crafts cyclization in the presence of stoichiometric amounts of DDQ and SnCl(4)via the benzylic C-H bond activation to furnish the corresponding trans- and cis-fused hexahydro-1H-benzo[f]isochromenes in good yields with complete stereoselectivity.  相似文献   

17.
Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene. 5-Silylcyclopentene (silyl migration product) is quantitatively obtained, while 5-silylbicyclo[2.1.0]pentane (intramolecular ring-closure product) is not detected in the denitrogenation reactions. Deuterium labeling studies clarify that 5-silylcyclopentene is formed by a suprafacial [1,2] silyl migration in singlet 2-silylcyclopentane-1,3-diyl. UDFT calculations closely reproduce the observed reactivity of the singlet diradical: The enthalpic barriers of the intramolecular ring-closure are calculated to be DeltaH++exo468 = 5.8 kcal/mol and DeltaH++endo468 = 6.7 kcal/mol, which are much higher than the energy barrier for the [1,2] silyl migration, DeltaH++468 = 2.7 kcal/mol. The notable effect of the silyl group on raising the energy barrier of the intramolecular cyclization is rationalized by an electronic configuration of the lowest singlet state of 2-silylcyclopentane-1,3-diyls.  相似文献   

18.
An efficient method for the cocyclotrimerization of bicyclic alkenes and benzynes catalyzed by palladium phosphine complexes to give the corresponding norbornane anellated 9,10-dihydrophenanthrene derivatives is described. Bicyclic alkenes 1a-i undergo [2 + 2 + 2] cocyclotrimerization with benzynes generated from precursors 2a-d [2-(trimethylsilyl)phenyl triflate (2a), 4,5-dimethyl-2-(trimethylsilyl)phenyl triflate (2b), 6-(trimethylsilyl)-2,3-dihydro-1H-5-indenyl triflate (2c), 4-methyl-2-(trimethylsilyl)phenyl triflate (2d)] in the presence of PdCl(2)(PPh(3))(2) in acetonitrile at ambient temperature to yield anellated 9,10-dihydrophenanthrene products 3a-r in moderate to excellent yields. The [2 + 2 + 2] cocyclotrimerization products from oxa- and azabicyclic alkenes can be applied for the synthesis of polyaromatics, substituted benzo[b]triphenylenes (8a-f), via a simple Lewis acid mediated deoxyaromatization in good yields. In addition the [2 + 2 + 2] products undergo retro Diels-Alder reaction readily, providing a new method for the synthesis of substituted phenanthrenes and for generating isobenzofurans. A plausible mechanism is proposed to account for the catalytic [2 + 2 + 2] cycloaddition reaction.  相似文献   

19.
The construction of 1-azaspirocyclic cycloalkanones using a siloxy-epoxide semipinacol ring expansion process was examined. Functionalized 1-azaspiro[5.5]undecan-7-ones (1-azaspirocyclic cyclohexanones) proceeded in high chemical yields with complete diastereoselectivity using titanium tetrachloride as the Lewis acid promoter. The formation of functionalized 6-azaspiro[5.4]-decan-1-ones (1-azaspirocyclic cyclopentanones) proceeded in high chemical yield with little diastereoselectivity. Modification of reaction parameters such as the Lewis acid promoter or the nature of the silyl ether allowed for the preferential formation of either ("anti" or "syn" 1,2 alkyl shift) diastereomeric product. An explanation for the different reactivity profiles between the cyclobutanol silyl ethers and cyclopentanol silyl ethers is provided.  相似文献   

20.
Lewis acid-mediated highly regioselective SN2-type ring-opening of 2-aryl-N-tosylazetidines with alcohols to afford various 1,3-amino ethers in excellent yields with good enantiomeric excess is described. Similar SN2-type ring-opening of chiral 2-phenyl-N-tosylaziridine with various alcohols produces the corresponding nonracemic 1,2-amino ethers in excellent yields and good ee. The mechanism of the ring-opening of aziridines and azetidines via an SN2 pathway is supported by the formation of nonracemic amino ethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号