首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving the permeate flux but retaining the rejection of thin-film composite(TFC) polyamide nanofiltration(NF) membrane is a high requirement for desalination. In this work, a calcium ion(Ca2+) coordinated polyamide(PA) NF membrane was prepared by directly adding CaCl2 to the piperazine(PIP) aqueous solution during the interfacial polymerization process. Due to the coordination interaction between Ca2+ and the amide bond in PA active layer, the number of hydrogen bonds in the PA active layer was reduced, causing in turn the decrease of physical cross-linking degree. As a consequence, the pore of the PA active layer was enlarged, prominently enhancing the water permeance of NF membrane. With the increase of CaCl2 concentration, the pure water flux of TFC NF increased significantly while the rejection of Na2SO4 decreased sightly. Compared with TFC NF membrane prepared without CaCl2, the permeate flux of the Ca2+ coordinated polyamide NF membrane prepared under optimal conditions was increased by 3-4 folds with Na2SO4 rejection of 95.26%. Meanwhile, such a Ca2+ coordinated PA NF membrane showed a better SO42-/Cl- selectivity.  相似文献   

2.
A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section. The membrane prepared under the optimum condition showed the salt rejection and water flux reached 97.3% and 51.2 L/m2 h, respectively. The high salt rejection and water flux was attributed to the rigid polymer backbone and the presence of strong hydrophilic sulfonic groups.  相似文献   

3.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

4.
N,N′-二甲基乙酰胺(DMAc)作为共试剂添加在间苯二胺水溶液中参与界面聚合反应, 以改善聚酰胺复合反渗透膜(PA-RO-x, x代表添加DMAc的质量分数)的性能. X射线光电子能谱(XPS)和衰减全反射傅里叶红外光谱(ATR-FTIR)分析表明, 随着DMAc含量的增加, 复合膜结构中交联聚酰胺含量相对于线性羧基部分有所增加; 场发射扫描电子显微镜(FE-SEM)和原子力显微镜(AFM)表征结果显示, 随着DMAc含量的增加, 膜表面的粗糙程度逐渐增大; 静态水接触角测试结果表明, 添加DMAc后, 膜的亲水性增强. 结合上述测试结果发现, 添加DMAc可以有效降低水油两相的不相溶性, 提高水相中间苯二胺向正己烷中扩散的速率, 这有助于加快间苯二胺与均苯三甲酰氯反应; 同时, 聚酰胺结构中交联酰胺含量的增加可以提供更多的氢键位点, 有助于水分子快速渗透通过复合膜而不损失截盐率; 膜表面的粗糙程度变大, 有助于提高水通量. 在2 g/L的氯化钠溶液和1.6 MPa测试压力条件下, PA-RO-5.2(DMAc添加质量分数为5.2%)的渗透通量和截盐率分别为66.1 L/(m2·h)和98.7%, 与未添加DMAc的聚酰胺复合反渗透膜相比, 通量增加115%, 截盐率仅下降0.9%.  相似文献   

5.
通过引入聚乙烯亚胺(PEI)链与对叠氮苯甲酸(ABA)分子对薄层芳香聚酰胺复合反渗透膜(TFC)进行接枝改性, 采用傅里叶衰减全反射红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)分析了反渗透膜活性分离层的化学组成和结构, 用静态水接触角仪与Zeta电位仪测试了反渗透膜表面的亲疏水性和电荷性质, 并利用扫描电子显微镜(SEM)及原子力显微镜(AFM)观察其表面形貌, 测试了反渗透膜在苦咸水与海水条件下的分离性能. 实验结果表明, 使用PEI与ABA对反渗透膜改性后, 提升了其分离层的致密度, 使硼渗透通过反渗透膜时的传质阻力变大, 从而将改性反渗透膜(TFC-PEI-ABA)对硼的截留率提升至90.45%, 达到了世界卫生组织对水质的要求.  相似文献   

6.
A composite RO membrane with high salt rejection and high flux for the desalination of seawater was prepared by treating a porous polysulfone (PS) support sequentially with a di-amine and then with a polyfunctional acid chloride, thereby forming a thin film of polyamide (PA) on the PS support. In order to establish conditions for the development of suitable thin film composite (TFC) membranes on a coating machine, various parametric studies were carried out which included varying the concentration of reactants, reaction time, curing temperature and curing time for thin film formation by the interfacial polymerization technique. By suitable combination of these factors,a desired thin film of polyamide with improved performance for seawater desalination could be obtained. Moreover, the product water fluxes were considerably enhanced by post-treatment of the TFC membrane. Continuous sheets of TFCs were developed on the mechanical coating unit and tested for RO performance in a plate-and-frame configuration with synthetic seawater. The performance of these composite membranes was also determined for the separation of organics and compared with cellulose acetate (CA) membranes.  相似文献   

7.
王少飞  虞源  吴青芸 《高分子学报》2020,(4):385-392,I0004
以聚多巴胺/聚乙烯亚胺(PDA/PEI)共沉积于三醋酸纤维素(CTA)多孔支撑膜表面形成中间层,再结合界面聚合法获得聚酰胺薄膜,构建了PDA/PEI共沉积中间层改性薄膜复合(TFC)正渗透(FO)膜.通过傅里叶变换衰减全反射红外光谱法、扫描电子显微镜、原子力显微镜、溶质截留法、水接触角仪等研究了PDA/PEI共沉积中间层对CTA膜和TFC膜的表面结构和性质的影响.研究结果表明,PDA/PEI共沉积使得CTA膜表面变得更为平滑,表面孔径减小至(30.0±4.1) nm,且表面孔径分布趋于均一.同时,在PDA/PEI共沉积改性CTA膜表面界面聚合得到的聚酰胺层呈现出更均匀的叶片状结构和优异的亲水性.基于此,具有PDA/PEI共沉积中间层的TFC正渗透膜显著提高了水通量(FO模式:(7.1±2.3) L/(m^2·h)),较空白TFC膜提升了57.6%.同时,中间层改性TFC膜具有更低的反向盐通量(FO模式:1.4±0.1 g/(m^2·h))和"净盐通量"(FO模式:(0.2±0.06) g/L),与空白TFC膜相比分别下降了83.9%和90.6%.说明PDA/PEI共沉积中间层不仅能有效提升TFC正渗透膜的水渗透性,而且大幅提升了膜的截盐性和渗透选择性.  相似文献   

8.
Positron annihilation spectroscopy (PAS) coupled with a slow positron beam was used to characterize in situ the layer structure and depth profile of the cavity size in thin film composite (TFC) polyamide nanofiltration (NF) membranes prepared by the interfacial polymerization method. Two techniques, using PAS coupled with a slow positron beam of Doppler broadening energy spectra (DBES) and positron annihilation lifetime spectroscopy (PALS) designed to reveal the layer structure and the cavity sizes contained in a multilayer thin film composite NF membrane, were assessed. To the best knowledge of the authors, a characterization of the depth profile of cavities in NF membranes using PAS coupled with a slow positron beam has never been reported. The membranes selected have a composite structure containing three layers: a selective polyamide layer, a transition layer, and a porous support prepared by the phase inversion technique. Furthermore, the cavity size distribution in the selective top layer plays an important role in determining the performance of the NF membranes.  相似文献   

9.
Intermediate-high molecular weight poly[2,2-(m-phenylene)-5,5-bibenzimidazole] has been produced by mixing 3,3′,4,4′-tetraminobiphenyl and isophthalic acid in polyphosphoric acid as polycondensing agent and triphenyl phosphite as catalyst. Polymers with intrinsic viscosities close to 1 were measured in 97% sulphuric acid. Membranes were prepared by solution casting and subsequently immersed in phosphoric acid in order to gain ionic conductivity. These membranes were characterised by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analyses, methanol permeation and conductivity measurements. Levels of acid and water absorbed by the membranes were measured and the kinetic of this process was studied. Finally, doped membranes were tested in an actual fuel cell setup, obtaining also information about gases crossover from the open circuit potential. Acceptably reproducible molecular weights between 115,000 and 190,000 were obtained allowing the casting of mechanically stable membranes, which showed a great affinity towards phosphoric acid, high thermal stability, and a conductivity of 0.039 S/cm at 190 °C with the membrane equilibrated in saturated air at 60 °C. Open circuit potential of a PBI membrane was 0.99 V, close to those of commercial perfluorinated membranes. A H2/O2 fuel cell with dry gases was able to produce a maximum power output of 0.22 W/cm2 at 175 °C.  相似文献   

10.
Membrane degradations by biofouling and free chlorine oxidation are the major obstacles for aromatic polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes to realize high performance over a long period of operation. In this work, a hydantoin derivative, 3-monomethylol-5,5-dimethylhydantoin (MDMH), was grafted onto the nascent aromatic polyamide membrane surfaces by the reactions with active groups (e.g., acyl chloride groups) in the surfaces. The grafted MDMH moieties with high reaction activity and free chlorine could play as sacrificial pendant groups when membranes suffer from chlorine attacks, and the chlorination products N-halamines with strong antimicrobial function could sterilize microorganisms on membrane surfaces and then regenerate to MDMH. This was designed as a novel means to improve both chlorine resistances and anti-biofouling properties of the aromatic polyamide TFC RO membranes.Attenuated total reflectance mode Fourier transform infrared spectroscopy (ATR-FTIR) revealed that the MDMH-modified membranes had two characteristic bands at 1772 and 1709 cm−1 corresponding to two carbonyl groups in hydantoin ring. This suggested the successful grafting of MDMH onto the membrane surfaces, which was further confirmed and quantified by X-ray photoelectron spectroscopy (XPS) analysis. After modification with MDMH, the membrane surface hydrophilicity increased obviously as contact angles decreased from 57.7° to 50.4–31.5°. But, there was no obvious change in membrane surface roughness after modification. The MDMH-modified membranes were shown to possess high chlorine resistances with small changes in water fluxes and salt rejections after chlorination with 100–2000 ppm h chlorine at pH 4. The chlorinated MDMH-modified membranes demonstrated obvious sterilization effects on Escherchia coli and substantial preventions against microbial fouling. Therefore, the MDMH-modified membranes offer a potential use as a new type of chlorine resistance and anti-biofouling TFC RO membranes.  相似文献   

11.
In this study, polysulfone/wood sawdust (PSf/WSD) mixed matrix membrane (MMM) was prepared as a novel substrate layer of thin‐film composite (TFC) membrane in water desalination. The main aim was to evaluate how different amounts of WSD (0‐5 wt%) and PSf concentrations (12‐16 wt%) in the porous substrate affect the properties of the final TFC membranes in the separation of organic and inorganic compounds. Morphological and wettability studies demonstrated that the addition of small amount of WSD (less than or equal to 1 wt%) in the casting solution resulted in more porous but similar hydrophobic substrates, while high loading (greater than or equal to 2 wt%) of WSD not only changed the substrate wettability and morphology but also increased and decreased the swelling and mechanical properties of substrate layer. Therefore, PA layer formed thereon displayed extensively varying film morphology, interfacial properties, and separation performance. Based on approximately stable permeate flux (ASPF) and apparent salt rejection efficiency (ASRE), the best TFC membrane was prepared over the substrate with 12 to 14 wt% of PSf and around 0.5 to 1 wt% of WSD. Although notable improvements in permeate flux were obtained by adding a small amount of sawdust, the results clearly indicate that the salt rejection mechanism of TFC membrane was different from the glycerin rejection mechanism. Furthermore, durability results of TFC membranes showed that in continuous operation for 30 days, TFC‐14/0.5 and TFC‐14/01 have the maximum plateau levels of stable permeate flux and salt rejection among the all TFC membranes.  相似文献   

12.
新型聚酰亚胺-氨酯反渗透复合膜的结构与性能   总被引:1,自引:0,他引:1  
通过界面聚合方法, 将功能单体N,N′-二甲基间苯二胺(DMMPD)与多元酰氯5-氯甲酰氧基-异肽酰氯(CFIC)聚合, 制得一种耐氧化的聚酰亚胺-氨酯反渗透复合膜. 采用全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)分析了膜活性层的化学结构, 考察了膜的耐氧化性能, 并探讨了膜活性层化学结构与膜抗氧化性能之间的关系.  相似文献   

13.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

14.
The surfaces of six polymeric membranes—two polysulphone membranes, two composite reverse‐osmosis polyamide/polysulphone membranes having polyamide as the active layer and two activated membranes containing di‐2‐ethylhexylphosphoric acid and di‐2‐ethylhexyldithiophosphoric acid as carriers, respectively—have been characterized before and after irradiation with an x‐ray source, both chemically and topographically by XPS and atomic force microscopy (AFM), respectively. Changes in atomic concentrations of the characteristic elements of the membranes and in the shape of XPS spectra as a function of irradiation time can be related to chemical modifications on the membrane surface. The most significant changes have been observed for polysulphone, which is reduced by x‐ray action; this fact also shows the inhomogeneity of the surface of the di‐2‐ethylhexyldithiophosphoric‐activated membrane. In contrast, polyamide top layers of composite membranes have been shown to be the most stable. Chemical modifications are not related directly to changes in membrane roughness because for all membranes only small changes have been observed for AFM images recorded before and after membrane irradiation. Moreover, the roughness of both polysulphone membranes decreases slightly due to x‐ray radiation but increases slightly for all polyamide‐containing membranes (composite and activated membranes). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Effect of silane coupling agents on the performance of RO membranes   总被引:1,自引:0,他引:1  
This study investigates the effect of silane coupling agents on the performance of reverse osmosis (RO) membranes on the basis of sol–gel coating method. The surfaces of the RO membranes were chemically modified with four different alkoxysilanes in order to reduce their hydrophilicity. The objective of this study is to superpose hydrophobic polysiloxane layer on the surface of a polyamide TFC RO membrane and to increase the extent of salt rejection by the modified membranes. A commercial composite RO membrane (SWC1) was treated with silane coupling agents in ethanol at three different concentrations: 1.0, 1.5, and 2.0% (w/v). The silane coupling agents contain one alkyl or phenyl and three alkoxy groups (e.g., methyltriethoxysilane, octyltriethoxysilane, octadecyltrimethoxysilane and phenyltriethoxysilane). In addition, the effect of alkyl or phenyl group hydrophobicity on the permeability and salt rejection of the modified membrane was examined. The surfaces of the modified membranes were characterized by SEM, AFM, contact angle analyzer, and XPS in order to confirm successful sol–gel methods. The modified membranes showed significantly enhanced salt rejection without a decrease in flux. From the surface analysis results, we can observe the changes in the surface roughness, elemental composition, electron energy, and hydrophilicity.  相似文献   

16.
Surface chemical characterization of activated composite membranes, which consist of a polyamide/polysulfone support containing different amounts of di-(2-ethylhexyl) phosphoric acid as carrier, was performed by X-ray photoelectron spectroscopy (XPS) in order to obtain information about the nature of the chemical bonding between the carrier and the membrane top layer. XPS spectra of the top layer of the polymeric support (polyamide) show bands in the C 1s, N 1s, O 1s, and P 2p regions. The N 1s and O 1s signals of the polyamide layer were asymmetric and could be deconvoluted in two peaks that correspond to the coexistence of free and hydrogen bonded polyamide. To support this assignment, primary amides such as benzamide and n-butyramide, which can associate themselves forming hydrogen bonding, and a tertiary amide, N-benzoyl morpholine, unable to form hydrogen bonding, were also studied by XPS. The N 1s asymmetric signals of benzamide and n-butyramide were deconvoluted in two peaks due to the coexistence of free and hydrogen bonded species, while the N 1s signal of N-benzoyl morpholine is symmetric and corresponds to the existence of free amide alone. As a result of the addition of di-(2-ethylhexyl) phosphoric acid to the polymeric matrix, the N 1s signal intensities decrease, while the P 2p signal intensities increase with carrier concentration to a maximum corresponding to surface site saturation. Upon acid addition, the polyamide was protonated and an expected chemical shift of the N 1s signal to higher binding energies was observed due to the increase of the positive charge of the nitrogen atom. This type of chemical interaction allows to fix the carrier in the membrane without its complete immobilization. On the other hand, the surface concentration of N and P, determined by XPS, indicates that a concentration of 400 mM of the carrier in the casting solution is sufficient to saturate the surface of the membrane. Copyright 2000 Academic Press.  相似文献   

17.
18.
The effects of a water-permeable polymer coating on the performance and fouling of high-flux (ESPA1 and ESPA3) and low-flux (SWC4) polyamide reverse osmosis (RO) membranes were investigated. It was anticipated that the coating would create a smoother hydrophilic surface that would be less susceptible to fouling when challenged with a motor-oil/surfactant/water feed emulsion (used as a model foulant). AFM and FT-IR analyses confirm that a 1 wt.% polyether–polyamide (PEBAX® 1657) solution applied to ESPA and SWC4 membranes produces a continuous polymer coating layer and, thereby, provides smoother membrane surfaces. However, pure-water permeation data combined with a series-resistance model analysis reveal that the coating does not only cover the surface of the polyamide membrane, but also penetrates into its porous ridge-and-valley structure. During a long-term (106-day) fouling test with an oil/surfactant/water emulsion, the rate of flux decline was slower for coated than for uncoated membranes. This improvement in fouling resistance compensated for the decrease in permeate flux for SWC4 over a period of approximately 40 days. However, the coating material is believed to penetrate more deeply into the polyamide surface layer of the high flux, high surface area ESPA membranes relative to the low-flux SWC4, resulting in significant water flux reduction.  相似文献   

19.
A novel thin-film composite (TFC) seawater reverse osmosis membrane was developed by the interfacial polymerization of 5-chloroformyloxyisophthaloyl chloride (CFIC) and metaphenylenediamine (MPD) on the polysulphone supporting membrane. The performance of the TFC membrane was optimized by studying the preparation parameters, which included the reaction time, pH of the aqueous-MPD solution, monomer CFIC concentration, additive isopropyl alcohol content in aqueous solution, curing temperature and time. The reverse osmosis performance of the resulting membrane was evaluated through permeation experiment with synthetic seawater, and the structure of the novel membrane was characterized by using SEM, AFM and XPS. Furthermore, the separation properties of the TFC membrane were tested by examining the reverse osmosis performances of various conditions, the boron rejection performance and the long-term stability. The results show that the desired TFC seawater reverse osmosis membrane has a typical salt rejection of 99.4% and a flux of about 35 L/m2 h for a feed aqueous solution containing 3.5 wt.% NaCl at 5.5 MPa, and an attractive boron rejection of more than 92% at natural pH of 7–8; that the novel seawater reverse osmosis membrane appears to comprise a thicker, smoother and less cross-linking film structure. Additionally, the TFC membrane exhibits good long-term stability.  相似文献   

20.
Polyamide/polyacrylonitrile thin‐film‐composite (TFC) nanofiltration (NF) membranes for the separation of oleic acid dissolved in organic solvents (methanol and acetone) were interfacially prepared by the reaction of trimesoyl chloride in an organic phase with an aqueous phase containing piperazine and m‐phenylene diamine. The interfacial reaction was confirmed by an investigation of the attenuated total reflection infrared spectrum. The surface morphology of the polyamide TFC membranes was examined with scanning electron microscopy. The hydrophilic properties of the membrane surfaces were conjectured on the basis of the ζ potential and contact angle. The effects of the monomer concentrations of the monomer blends (aliphatic and aromatic diamines) and drying times on various aspects of membrane performance, such as the solvents (water, alcohols, ketones, and hexane), permeation rates, and organic solute [poly(ethylene glycol) 200 and oleic acid] rejection rates, were investigated. All the membranes showed good solvent resistance. The polar solvent flux for water and methanol was higher than that for a nonpolar solvent (hexane). The membranes gave good rejection rates of oleic acid dissolved in methanol and acetone. The NF membranes were compared with various commercial membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2151–2163, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号