首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Molecular dynamics simulation of crack-tip processes in copper   总被引:1,自引:0,他引:1  
The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down. The project supported by the National Natural Science Foundation of China  相似文献   

2.
Precursor decay in plate impact experiments on single crystals is re-examined from the viewpoint of the elastodynamics of moving dislocations. Superposition of solutions for many dislocations set in motion by an incident plane wave is used to relate the decay of the wave amplitude at the front of the plane wave to the density and velocity of dislocations at the wavefront. The resulting precursor decay relation is the same as the one derived from an elastic/visco-plastic model of the material, except for a small correction due to differences between the effects of forward and backward propagating dislocations. Motivated by this added support for the validity of the precursor decay equation, the values used for the quantities in this equation are re-examined. Recent experimental results and the elastodynamics analysis are interpreted as indicating that the commonly-used values of dislocation velocity are probably satisfactory, but that the values used for dislocation density are several orders of magnitude too small near the lapped surfaces of the crystal. These large dislocation densities are identified as the probable dominant cause of the lower-than-predicted precursor amplitudes that are recorded in experiments. More accurate experimental data and inclusion of the non-linear elasticity effects are essential in determining whether or not the observed precursor decay in the bulk of the specimen can be explained by the motion of dislocations present initially. Calculations of energy radiated from screw and edge dislocations that start from rest and move thereafter at constant velocity confirm that dislocation drag forces due to continuum elasticity effects are small for dislocation velocities less than, say, 80% of the elastic shear wave speed. At supersonic speeds the continuum drag effects become so large that sustained supersonic motion of dislocations appears unlikely.  相似文献   

3.
Based on the work of Borisova, a more general method is proposed to determine the stress functions, from which the stress field is derived, of an edge dislocation pile-up and wall. For this purpose, Kröner’s theory of discrete dislocation in a continuum is applied to these two typical infinite and periodic configurations of edge dislocations. It is shown that the calculated stress functions can be used to easily determine the stress field of other configurations like screw dislocation pile-up or symmetrical tilt boundary.  相似文献   

4.
The correspondence theorem which relates the solutions of displacement boundary value problems in classical and couple stress elasticity is formulated and applied to derive the solutions for edge and screw dislocations in an infinite medium. The effects of couple stresses on the dislocation strain energy is evaluated for both types of dislocations. It is shown that within a radius of influence of each dislocation in a metallic crystal with dislocation density of 1010 cm−2, the strain energy contribution from couple stresses (excluding the core energy) is about 15% in the case of an edge dislocation, and about 11% in the case of a screw dislocation. It is then shown that couple stresses make large effect on the total work of tractions acting on the dislocation core surface.  相似文献   

5.
研究了压电双材料界面钝裂纹附近螺型位错的屏蔽效应与发射条件.应用保角变换技术,得到了复势函数与应力场的封闭形式解,讨论了位错方位、双材料电弹常数及裂纹钝化程度对位错屏蔽效应和发射条件的影响.结果表明,Burgers矢量为正的螺型位错可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随位错方位角及位错与裂纹尖端距...  相似文献   

6.
借助复变函数方法,研究了点群6mm 一维六方准晶压电材料中运动螺型位错,得到位错芯附近的应力、位移、能量的解析表达式.分析发现,在靠近运动螺型位错芯处,声子场和相位子场应力的分量表现出(x2+y2)-1的奇异性.当不考虑相位子场的影响时,文中得到的结果可以退化为含运动螺型位错的压电材料中的结果;当不考虑电场的影响时,退...  相似文献   

7.
The wave propagation problem for a largely arbitrary anti-plane displacement discontinuity imposed along a line perpendicular to the surface of a stress-free linearly viscoelastic half-plane is considered. The general Laplace transform solution is obtained and then inverted for the case of a screw dislocation moving at an arbitrary speed in a Maxwell material. It is shown that the material viscoelasticity alters the coefficient of the dislocation edge stress singularity and damps the surface displacements from the elastic values. The surface damping increases with time, distance from the dislocation path and dislocation speed, whether sub- or supersonic.  相似文献   

8.
This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.  相似文献   

9.
This work is concerned with the cracking characteristics of mixed mode dislocations near a lip-like mode crack, stress intensity and strain energy density factor are obtained by using conformal mapping, singularity analysis and Cauchy integrals. Shielding effect generated by screw dislocation near a lip-like mode crack decreases with the increment of the distance between screw dislocation and crack tip. Larger distance between two faces of the crack leads to the shielding effect waning. The strain energy density factor of mode III decreases with the increment of the distance between dislocation and crack tip. Larger distance between two faces of lip-like mode crack also leads to the strain energy density factor waning and encourages crack initiation; the shielding effects generated by edge dislocation near the crack decrease with the increment of the distance between edge dislocation and crack tip.  相似文献   

10.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation is very important.  相似文献   

11.
The core structure of (110){001} mixed disloca- tion in perovskite SrTiO3 is investigated with the modified two-dimensional Peierls-Nabarro dislocation equation con- sidering the discreteness effect of crystals. The results show that the core structure of mixed dislocation is independent of the unstable energy in the (100) direction, but closely related to the unstable energy in the (110) direction which is the direction of total Burgers vector of mixed dislocation. Furthermore, the ratio of edge displacement to screw one nearly equals to the tangent of dislocation angle for differ- ent unstable energies in the (110) direction. Thus, the con- strained path approximation is effective for the (110){001} mixed dislocation in SrTiO3 and two-dimensional equation can degenerate into one-dimensional equation that is only related to the dislocation angle. The Peierls stress for (110) {001 } dislocations can be expediently obtained with the one-dimensional equation and the predictive values for edge, mixed and screw dislocations are 0.17, 0.22 and 0.46 GPa, respectively.  相似文献   

12.
摘要:研究了穿透圆形夹杂界面的半无限楔形裂纹与裂纹尖端螺型位错的干涉问题。应用复变函数解析延拓技术与奇性主部分析方法,得到了位错位于半圆形夹杂内部时,半无限基体和半圆形夹杂内复势函数的解析解。然后利用保角映射技术得到了穿透圆形夹杂界面的半无限楔形裂纹尖端螺型位错产生的应力场以及作用在位错上的位错力的解析表达式。主要讨论了螺型位错对裂纹的屏蔽效应以及从楔形裂纹尖端发射位错的临界载荷条件。研究结果表明正的螺型位错可以削弱楔形裂纹尖端的应力强度因子,屏蔽裂纹的扩展,屏蔽效应随位错方位角的增大而减小。位错发射所需的无穷远临界应力随发射角的增加而增大,最可能的位错发射角度为零度,直线裂纹尖端位错的发射比楔形裂纹尖端位错的发射更容易,硬基体抑制位错的发射。  相似文献   

13.
The Peach–Koehler expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane and antiplane strain versions of J integrals around the center of the dislocation. After expressing the elastic fields as the sums of elastic fields of each dislocation, the energy momentum tensor is decomposed into three parts. It is shown that only one part, involving mixed products from the two dislocation fields, makes a nonvanishing contribution to J integrals and the corresponding dislocation forces. Three examples are considered, with dislocations on parallel or intersecting slip planes. For two edge dislocations on orthogonal slip planes, there are two equilibrium configurations in which the glide and climb components of the dislocation force simultaneously vanish. The interactions between two different types of screw dislocations and a nearby circular void, as well as between parallel line forces in an infinite or semi-infinite medium, are then evaluated.  相似文献   

14.
In this paper, a unified mechanics model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations within the plastic zone in the form of an inverse pile up are treated as discrete elastic edge dislocations. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear governing equations are obtained which take into account for the interaction between the emitted dislocations and cohesive zone and the nonlinear interaction between sliding displacement and the opening displacement. After discretization, the governing equations are transformed into a set nonlinear algebraic equations which are solved with Newton-Raphson Method. The results of calculation for pure shearing and combined tension and shear loading after dislocation emission are given in detail. Finally, the process of dislocation nucleation and emission on a pair of symmetric slip planes of angle α with respect to the crack plane under pure mode I load is analysed. The equilibrium positions and the number of emitted dislocation are determined. Several possible competition behaviors of dislocation emission vs cleavage are revealed.  相似文献   

15.
The strengthening of Al by Mg solute atoms is investigated using molecular dynamics (MD) studies of single dislocations moving through a field of randomly placed solutes. The MD method permits explicit treatment of “core” effects, dislocation pinning and deceleration, and dislocation unpinning by thermal activation, all under an applied load. Choice of an appropriate MD simulation cell size is assessed using analytic concepts developed by Labusch. The interaction energy of a single Mg atom with straight edge and screw dislocations is computed and compared with continuum models. Using the single Mg energies, a one-dimensional energy landscape for the motion of a straight edge dislocation through a random field of Mg solutes is computed. The minima in this landscape match well with those found in the MD simulations at zero temperature. The stress to unpin a straight edge dislocation trapped in a local energy minimum generated by the solutes is then predicted semi-analytically using the energy landscape, and good agreement is obtained with the MD results. At temperatures of 300 and 500 K, the thermally activated rate of unpinning vs. stress and temperature is calculated semi-analytically, and agreement with the full MD results is again obtained with the fitting of a single attempt frequency in a transition state model. The agreement of the semi-analytical models provides a basis for calculating yield stress vs. strain rate and temperature, resulting from statistical pinning, for the case of non-interacting dislocations on a single slip system, and for extending the analysis to study dynamic strain aging effects resulting from diffusion of Mg atoms around a pinned dislocation.  相似文献   

16.
The aim of this paper is to provide new results and insights for a screw dislocation in functionally graded media within the gauge theory of dislocations. We present the equations of motion for dislocations in inhomogeneous media. We specify the equations of motion for a screw dislocation in a functionally graded material. The material properties are assumed to vary exponentially along the x and y-directions. In the present work we give the analytical gauge field theoretic solution to the problem of a screw dislocation in inhomogeneous media. Using the dislocation gauge approach, rigorous analytical expressions for the elastic distortions, the force stresses, the dislocation density and the pseudomoment stresses are obtained depending on the moduli of gradation and an effective intrinsic length scale characteristic for the functionally graded material under consideration.  相似文献   

17.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

18.
应用关联参照模型、随位错位置变化的柔性位移边界条件和三维分子动力学方法研究了体心立方(BCC)金属晶体钼在不同温度下裂尖发射位错的力学行为,随着温度的提高,不但发射位错的临界应力强度因子下降而且在同一应 度因子条件下,发射位错的数量出增加,位错速度和不全位错之间的扩展距离对温度不敏感,在位错发射过程中,发现了稳定的和不稳定的两个变形状态,在稳定的有状态,位错发射后,塞积在远离裂纹尖端处;必须增加外  相似文献   

19.
This paper provides solutions for the stress and displacement fields induced in a half-space by an edge dislocation of constant magnitude, where the dislocation line is a circular ring lying in a plane parallel with the free surface. Two types of edge dislocations are considered; the prismatic form with a displacement discontinuity vector normal to the surface and cases with radial dislocation vectors. The latter are not true Volterra dislocations and produce different results for different path cuts these effects are investigated in some detail. The primary application of these results is for analysis of axisymmetric problems – the radial dislocations would be impossible in finite material.  相似文献   

20.
A mathematical methodology for analysing pile-ups of large numbers of dislocations is described. As an example, the pile-up of n identical screw or edge dislocations in a single slip plane under the action of an external force in the direction of a locked dislocation in that plane is considered. As n→∞ there is a well-known formula for the number density of the dislocations, but this density is singular at the lock and it cannot predict the stress field there or the force on the lock. This poses the interesting analytical and numerical problem of matching a local discrete model near the lock to the continuum model further away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号