首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various logical operations can be performed by molecular logic gates (MLG) based on 2-styrylquinoline derivatives using irradiation with light and protonation as input signals and absorbance (optical density) as output signal. The MLG operation type (“INH”, “OR”, “AND”) depends on the observation wavelength.  相似文献   

2.
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule‐modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA‐based logic gates. The enzyme‐based Fredkin gate with three input and three output signals was connected to the DNA‐based Feynman gate with two input and two output signals—both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input‐controlled signal‐routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.  相似文献   

3.
Self‐assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA‐based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three‐state molecular logic gate readily achievable on this platform. Such DNA‐based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

4.
Self-assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA-based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three-state molecular logic gate readily achievable on this platform. Such DNA-based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

5.
Molecular logic gates process physical or chemical “inputs” to generate “outputs” based on a set of logical operators. We report the design and operation of a chemical ensemble in solution that behaves as integrated AND, OR, and XNOR gates with optical input and output signals. The ensemble is composed of a reversible merocyanine‐type photoacid and a ruthenium polypyridine complex that functions as a pH‐controlled three‐state luminescent switch. The light‐triggered release of protons from the photoacid is used to control the state of the transition‐metal complex. Therefore, the two molecular switching devices communicate with one another through the exchange of ionic signals. By means of such a double (optical–chemical–optical) signal‐transduction mechanism, inputs of violet light modulate a luminescence output in the red/far‐red region of the visible spectrum. Nondestructive reading is guaranteed because the green light used for excitation in the photoluminescence experiments does not affect the state of the gate. The reset is thermally driven and, thus, does not involve the addition of chemicals and accumulation of byproducts. Owing to its reversibility and stability, this molecular device can afford many cycles of digital operation.  相似文献   

6.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

7.
Controlled logic gates, where the logic operations on the Data inputs are performed in the way determined by the Control signal, were designed in a chemical fashion. Specifically, the systems where the Data output signals directed to various output channels depending on the logic value of the Control input signal have been designed based on enzyme biocatalyzed reactions performed in a multi‐cell flow system. In the Switch gate one Data signal was directed to one of two possible output channels depending on the logic value of the Control input signal. In the reversible Fredkin gate the routing of two Data signals between two output channels is controlled by the third Control signal. The flow devices were created using a network of flow cells, each modified with one enzyme that biocatalyzed one chemical reaction. The enzymatic cascade was realized by moving the solution from one reacting cell to another which were organized in a specific network. The modular design of the enzyme‐based systems realized in the flow device allowed easy reconfiguration of the logic system, thus allowing simple extension of the logic operation from the 2‐input/3‐output channels in the Switch gate to the 3‐input/3‐output channels in the Fredkin gate. Further increase of the system complexity for realization of various logic processes is feasible with the use of the flow cell modular design.  相似文献   

8.
One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals.  相似文献   

9.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

10.
DNA computation is an emerging field that enables the assembly of complex circuits based on defined DNA logic gates. DNA-based logic gates have previously been operated through purely chemical means, controlling logic operations through DNA strands or other biomolecules. Although gates can operate through this manner, it limits temporal and spatial control of DNA-based logic operations. A photochemically controlled AND gate was developed through the incorporation of caged thymidine nucleotides into a DNA-based logic gate. By using light as the logic inputs, both spatial control and temporal control were achieved. In addition, design rules for light-regulated DNA logic gates were derived. A step-response, which can be found in a controller, was demonstrated. Photochemical inputs close the gap between DNA computation and silicon-based electrical circuitry, since light waves can be directly converted into electrical output signals and vice versa. This connection is important for the further development of an interface between DNA logic gates and electronic devices, enabling the connection of biological systems with electrical circuits.  相似文献   

11.
Certain molecular switches respond to input stimulations producing detectable outputs. The interplay of these signals can be exploited to reproduce basic logic operations at the molecular level. The transition from simple logic gates to complex digital circuits requires the design of chemical systems able to process multiple inputs and outputs. We have identified a three-state molecular switch that responds to one chemical and two optical inputs producing two optical outputs. We have encoded binary digits in its inputs and outputs applying positive logic conventions and demonstrated that this chemical system converts three-digit input strings into two-digit output strings. The logic function executed by the three-state molecular switch is equivalent to that of a combinational logic circuit integrating two AND, two NOT, and one OR gate. The three states of the molecular switch are a colorless spiropyran, a purple trans-merocyanine, and its yellow-green protonated form. We have elucidated their structures by X-ray crystallography, (1)H NMR spectroscopy, COSY and NOE experiments, as well as density functional calculations. The three input stimulations controlling the interconversion of the three states of the molecular switch are ultraviolet light, visible light, and H(+). The two outputs are the absorption bands in the visible region of the two colored states of the molecular switch. We have monitored the switching processes and quantified the associated thermodynamic and kinetic parameters with the aid of (1)H NMR and visible absorption spectroscopies.  相似文献   

12.
The studied enzyme-based biocatalytic system mimics NXOR Boolean logic gate, which is a logical operator that corresponds to equality in Boolean algebra. It gives the functional value true ( 1 ) if both functional arguments (input signals) have the same logical value ( 0 , 0 or 1 , 1 ), and false ( 0 ) if they are different ( 0 , 1 or 1 , 0 ). The output signal producing reaction is catalyzed by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH), which is inhibited at acidic and basic pH values. Two other reactions catalyzed by esterase and urease produce acetic acid and ammonium hydroxide, respectively, shifting solution pH from the optimum pH for PQQ-GDH to acidic and basic values ( 1 , 0 and 0 , 1 input combinations, respectively), thus switching the enzyme activity off (output 0 ). When the input signals are not applied ( 0 , 0 combination) or both applied compensating each other ( 1 , 1 combination) the optimum pH is preserved, thus keeping PQQ-GDH running at the high rate (output 1 ). The biocatalytic cascade mimicking the NXOR gate was characterized optically and electrochemically. In the electrochemical experiments the PQQ-GDH enzyme communicated electronically with a conducting electrode support, thus resulting in the electrocatalytic current when signal combinations 0 , 0 and 1 , 1 were applied. The logic gate operation, when it was realized electrochemically, was also extended to the biomolecular release controlled by the gate. The release system included two electrodes, one performing the NXOR gate and another one activated for the release upon electrochemically stimulated alginate hydrogel dissolution. The studied system represents a general approach to the biocatalytic realization of the NXOR logic gate, which can be included in different catalytic cascades mimicking operation of concatenated gates in sophisticated logic circuitries.  相似文献   

13.
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.  相似文献   

14.
Recently, the design and development of nanozyme-based logic gates have received much attention. In this work, by engineering the stability of the nanozyme-catalyzed product, we demonstrated that the chromogenic system of 3, 3′, 5, 5′-tetramethylbenzidine (TMB) can act as a visual output signal for constructing various Boolean logic operations. Specifically, cerium oxide or ferroferric oxide-based nanozymes can catalyze the oxidation of colorless TMB to a blue color product (oxTMB). The blue-colored solution of oxTMB could become colorless by some reductants, including the reduced transition state of glucose oxidase and xanthine oxidase. As a result, by combining biocatalytic reactions, the color change of oxTMB could be controlled logically. In our logic systems, glucose oxidase, β-galactosidase, and xanthine oxidase acted as inputs, and the state of oxTMB solution was used as an output. The logic operation produced a colored solution as the readout signal, which was easily distinguished with the naked eye. More importantly, the study of such a decolorization process allows the transformation of previously designed AND and OR logic gates into NAND and NOR gates. We propose that this work may push forward the design of novel nanozyme-based biological gates and help us further understand complex physiological pathways in living systems.  相似文献   

15.
There is increasing interest in studying molecular-based devices that perform Boolean logic operations whose output state (0 or 1) depends on the input conditions (0/0, 1/0, 0/1, or 1/1). So far, great efforts have been devoted to establish molecular-scaled logic gates activated by chemical, physical, and biological inputs. We herein describe the design and synthesis of a tandem protein kinase substrate peptide acting as a phosphate-mediated molecular memory. The molecular-based memory system is comprised of two different phosphorylatable substrate regions joined in series and a spiropyran derivative at the N-terminus. We also demonstrated three basic "AND", "OR", and "NOR" logic operations on the basis of alterations in the spiropyran-to-merocyanine (SP-to-MC) thermocoloration properties of the spiropyran moiety in the peptide upon kinase-catalyzed phosphorylation. The three logic functions were successfully performed by adding ionic polymers as programming elements with preset thresholds of a signal intensity in a microplate format. Throughout this study, information was recorded on the substrate peptide by protein kinase-catalyzed phosphorylation, stored stably as phosphoesters, read according to the extent of the SP-to-MC thermocoloration, and erased by phosphatase-catalyzed dephosphorylation, resulting in the peptide returning to the initial recordable state. Thus, the proof-of-concept experiments described herein could be used to provide clues for developing practical molecular-based processing and computing.  相似文献   

16.
Digital communication through intermolecular fluorescence modulation   总被引:1,自引:0,他引:1  
Raymo FM  Giordani S 《Organic letters》2001,3(12):1833-1836
[see reaction]. Ultraminiaturized processors incorporating molecular components can be developed only after devising efficient strategies to communicate signals at the molecular level. We have demonstrated that a three-state molecular switch responds to ultraviolet light, visible light, and H+, attenuating the emission intensity of a fluorescent probe. Intermolecular communication is responsible for the transduction of three input signals into a single optical output. The behavior of the communicating ensemble of molecules corresponds to that of a logic circuit incorporating seven gates.  相似文献   

17.
Conventional electronic circuits can perform multi‐level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon‐based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer‐based multi‐level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer–target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer‐linked redox probes and solution‐phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi‐level logic operation, which has the potential to simplify an otherwise complex diagnosis to a “yes” or “no” decision.  相似文献   

18.
The coupled activation of two enzymes: glucose dehydrogenase (GDH) and horseradish peroxidase (HRP), is used to construct the parallel-operating AND and InhibAND logic gates. The added substrates for the respective enzymes, glucose and H(2)O(2), act as the gate inputs, while the biocatalytically generated NADH and gluconic acid provide the output signals that follow the operations of the gates. The two gates are generated in the same vial, thus allowing the logic operations to take place in parallel, and the simultaneous readout of the functions of the gates.  相似文献   

19.
Molecular and supramolecular logic gates are candidates for computation at the nanoscale level. Nowadays all common logic operations can be mimicked with molecular devices based on chemical approaches. One step further towards molecular systems with increased logic capabilities is the addition or subtraction of binary digits. This Minireview describes recent developments to attain this goal, including bioinspired systems based on DNA and enzymes. Furthermore, chemical molecular logic gates are discussed and compared critically with regard to alternative concepts.  相似文献   

20.
This paper describes a new concept in the way information can be protected at the molecular scale. By harnessing the principles of molecular Boolean logic, we have designed a molecular device that mimics the operation of an electronic keypad lock, e.g., a common security circuit used for numerous applications, in which access to an object or data is to be restricted to a limited number of persons. What distinguishes this lock from a simple molecular logic gate is the fact that its output signals are dependent not only on the proper combination of the inputs but also on the correct order by which these inputs are introduced. In other words, one needs to know the exact passwords that open this lock. The different password entries are coded by a combination of two chemical and one optical input signals, which can activate, separately, blue or green fluorescence output channels from pyrene or fluorescein fluorophores. The information in each channel is a single-bit light output signal that can be used to authorize a user, to verify authentication of a product, or to initiate a higher process. This development not only opens the way for a new class of molecular decision-making devices but also adds a new dimension of protection to existing defense technologies, such as cryptography and steganography, previously achieved with molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号