首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of yttrium substitution at the lanthanum site on the superconducting properties of La1?xYxO0.9F0.1FeAs (‘x = 0, 0.10, 0.20, 0.30, 0.50 and 0.60) oxypnictides has been studied. Powder X-ray diffraction studies confirm single phases till x = 0.1 beyond which minor amount of Y2O3 is observed. The temperature dependence of resistivity measurements confirm the superconducting transition temperature (Tc) of 34.8 (±0.05) K and corresponding Meissner transition at 34.3 K in the ‘x = 0.3 composition which is higher than that reported for the parent phase (LaO0.9F0.1FeAs (Tc = 28 K)). Further increase in the concentration of yttrium leads to broadening and suppression of the superconducting transition. The value of Hc2 at zero temperature is estimated to be about 60.5 T. The Seebeck coefficient (S) shows a negative sign indicating that the major contribution to the conductivity is by electrons. The Hall coefficient (RH) also remains negative throughout the temperature range supporting the thermopower results. The lattice parameters (a and c) decreases and the charge-carrier density increases with yttrium doping.  相似文献   

2.
Electron-doping of the semimetal (CeOFeAs) by either fluorine (max Tc ∼ 43 K) or cobalt (max Tc ∼ 11 K) leads to superconductivity. Here we show the effect of transition metal (Co) substitution at the iron site on the superconducting properties of CeO0.9F0.1FeAs (Tc ∼ 38 K) to understand the interplay of charge carriers in both the rare earth-oxygen and Fe–As layers. Simultaneous doping of equivalent number of charge carriers in both layers leads to a Tc of 9.8 K which is lower than the Tc obtained when either the conducting layer (FeAs) or charge reservoir layer (CeO) is individually doped. This suggests a clear interplay between the two layers to control the superconductivity. Resistivity upturn and negative magnetoresistance are observed with Co doping that is interpreted in the gamut of Kondo effect. Hall coefficient and thermoelectric power indicate increased carrier concentration with cobalt doping in CeO0.9F0.1FeAs. The rf penetration depth both for CeO0.9F0.1Fe0.95Co0.05As and CeO0.9F0.1FeAs show an exponential temperature dependence with gap values of ∼1.6 and 1.9 meV respectively.  相似文献   

3.
We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.  相似文献   

4.
In this paper we report the fabrication and superconducting properties of GdO1−x F x FeAs. It was found that when x is equal to 0.17, GdO0.83F0.17FeAs is a superconductor with the onset transition temperature T con ≈ 36.6 K. Resistivity anomaly near 130 K was observed for all samples up to x = 0.17, and such a phenomenon is similar to that of LaO1−x F x FeAs. Hall coefficient indicates that GdO1−x F x FeAs is conducted by electron-like charge carriers. Recommended by Prof. Nie Yuxin, Executive Editor of Science in China Series G-Physics, Mechanics & Astronomy Supported by the National Natural Science Foundation of China (Grant Nos. 10221002/A0402 and 10774170/A0402), the National Basic Research Program of China (973 Program) (Grant Nos. 2006CB601000, 2006CB921107 and 2006CB921802), and the Chinese Academy of Sciences (ITSNEM)  相似文献   

5.
The crystal structure of BaFe2As2 was studied by high-pressure neutron powder diffraction in the pressure range from ambient to 6.5 GPa as well as in the temperature range from 12 K to 293 K at 4.4 GPa and no pressure or temperature induced phase changes were observed. The compression mechanism of BaFe2As2 was found to be anisotropic as the a- and c-axes are reduced by 2.49 and 3.66%, respectively at 6.5 GPa. Within the FeAs layers the Fe-As and Fe-Fe bonds decrease by 2.49 and 3.66%, respectively. The Ba-As distance decreases by 3.70% while the As-As inter-atomic distance along the c-axis exhibits a complex pressure dependence. The bulk modulus B 0 and its pressure derivative B 0' were determined to be B 0 = 59(2) GPa and B 0' = 6.1(7) at ambient temperature.  相似文献   

6.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

7.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

8.
The anisotropy in the superconducting properties of single-crystal Nd1.85Ce0.15CuO4 was studied from measurements of the heat capacity within the temperature interval 2–40 K in zero magnetic field and in a magnetic field of 8 T. We report on the first observation of heat capacity jumps occurring at the superconducting transition for various magnetic field orientations with respect to the crystallographic axes and on a strong anisotropy of the magnetic contribution to heat capacity in magnetic fields oriented in the a-b plane and perpendicular to it. These measurements yielded the anisotropy in the electronic heat capacity coefficient γn(H) and in the superconducting transition temperature Tc(H). The angular dependence of the Sommerfeld coefficient γn in the a-b plane observed in a magnetic field of 8 T exhibits four-lobe symmetry and zero gap direction of the order parameter. A comparison of the results obtained on the Nd1.85Ce0.15CuO4 single crystal with the data available for La1.85Sr0.15CuO4 permits one to conclude that the mechanisms of superconductivity in the electron-and hole-doped superconductors are similar.  相似文献   

9.
We have prepared the newly discovered Fe-based superconducting material LaO1-xFxFeAs (0 ≤ x ≤ 0.2) in polycrystalline form and have investigated the samples by means of structural, thermodynamic and transport measurements. Our investigations reveal a non superconducting phase at 0 ≤ x 0.04 which for x = 0 is characterized by a structural transition towards an orthorhombic distortion at Ts ≈ 160 K and antiferromagnetic spin order at TN ≈ 138 K. Both transitions lead to strong anomalies in various transport properties as well as in magnetization and in specific heat. Remarkably, the transition temperatures are only weakly doping dependent up to x ≈ 0.04. However, the transitions are abruptly suppressed at x ≥ 0.05 in favour of a superconducting phase with a critical temperature Tc 20 K. Upon further increasing the F-doping Tc increases up to a maximum of Tc = 26.8 K at x = 0.1 which is followed by a decrease down to Tc ≈ 10 K at x ≥ 0.15.  相似文献   

10.
Hydrostatic pressure studies on the tetragonal 123 superconductor (La1-xCax) (Ba1.75-xLa0.25+x)Cu3Oy for x =0.1 and variable oxygen content y show that increases rapidly under pressure (+5 K/GPa) for underdoped, optimally doped and overdoped samples. This points to a common cause for the pressure-induced changes in the superconductivity at all levels of doping, with negligible effects from charge transfer. Weak relaxation behavior in is observed only for the most underdoped sample. Received 26 August 1999  相似文献   

11.
通过对EuSr2Ru1-xTaxCu2O8 (x=0.0, 0.1, 0.2, 0.5和1.0)体系的结构、电阻和磁化强度的观测,发现EuSr2RuCu2O8(x=0.0)样品在130.2K以下呈现铁磁有序,在35K时发生了超导转变,并呈现典型的欠掺杂高温超导体特征;随着Ta对Ru替代浓度x值的增加,铁磁相变温度和超导临界温度均下降 关键词: 高温超导电性 铁磁有序 Ru-Cu氧化物  相似文献   

12.
Novel multifunctional ceria based materials may show an improved performance in catalytic processes involving CO2 activation and reforming of hydrocarbons. Towards a more detailed understanding of the underlying surface chemistry, we have investigated CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. All model systems are prepared starting from well-ordered and fully stoichiometric CeO2(111) films on a Cu(111) substrate. Samples with different structure, oxidation state and compositions are generated, including CeO2-x/Cu(111) (reduced), MgO/CeO2-x/Cu(111) (reduced), mixed MgO-CeO2/Cu(111) (stoichiometric), and mixed MgO-CeO2-x/Cu(111) (reduced). The morphology of the model surfaces is characterized by means of scanning tunneling microscopy (STM), whereas the electronic structure and reactivity is probed by X-ray photoelectron spectroscopy (XPS). The experimental approach allows us to compare the reactivity of samples containing different types of Ce3+, Ce4+, and Mg2+ ions towards CO2 at a sample temperature of 300 K. Briefly, we detect the formation of two CO2-derived species, namely carbonate (CO3 2-) and carboxylate (CO2 -) groups, on the surfaces of all investigated samples after exposure to CO2 at 300 K. In parallel to formation of the carbonate species, slow partial reoxidation of reduced CeO2-x/Cu(111) occurs at large doses of CO2. The reoxidation of the reduced ceria is largely suppressed on MgO-containing samples. The tendency for reoxidation of Ce3+ to Ce4+ by CO2 decreases with increasing degree of intermixing between MgO and CeO2-x. Additionally, we have studied the stability of the formed carbonate species as a function of annealing temperature.  相似文献   

13.
The results of EPR studies of Ce3+ ions incorporated into single crystals of mixed yttrium-lutecium orthoaluminates Y1?xLuxAlO3 (YLuAP, x=0.1, 0.3) are reported. In compositionally disordered YLuAP compounds, in comparison to YAlO3, new paramagnetic Ce3+ centers are found. These centers are caused by the changes in symmetry and in the crystal field magnitude due to the isomorphic substitution of Y3+ ions by Lu3+ in the yttrium sublattice of orthoaluminates. It is shown that the formation of 27 different types of centers is possible in YLuAP with variation of the Lu content. The probabilities of formation of new paramagnetic centers are calculated.  相似文献   

14.
The spectra of the conductivity and dielectric constant of La1.87Sr0.13CuO4 cuprate have been directly measured in the frequency range of 0.3 to 1.2 THz (10–40 cm−1) and the temperature range of 5 to 300 K in the E | c polarization (the electric field vector of radiation is perpendicular to the copper-oxygen planes). Excitation has been observed in the superconducting phase, and its nature has been attributed to the transverse optical excitation of the condensate of Cooper pairs, which appears because Josephson junctions between CuO planes are modulated due to in-plane magnetic and charge stripes. Additional quasiparticle absorption of unknown origin has been detected at frequencies below ≈15 cm−1 at liquid helium temperatures.  相似文献   

15.
The EPR spectra of Ce3+ impurity ions in LiYF4, LiLuF4, and LiTmF4 double-fluoride single crystals have been investigated at a frequency of ∼9.3 GHz in the temperature range 5–25 K. The effective g factors of the ground Kramers doublet of the cerium ions in three crystals are close to each other (g = 2.737, g = 1.475 for LiYF4:Ce3+). A superhyperfine structure of the EPR spectrum of Ce3+ ions in the LiTmF4 Van Vleck paramagnet has been observed in the external magnetic field B oriented along the crystallographic axis c (Bc). The superhyperfine structure of the EPR soectra of the Ce3+ ions in the LiYF4 and LiLuF4 diamagnetic matrices is resolved for Bc. Possible factors responsible for this pronounced difference in the properties of the systems studied have been discussed.  相似文献   

16.
We use inelastic neutron scattering to study the low-energy spin excitations of polycrystalline samples of nonsuperconducting CeFeAsO and superconducting CeFeAsO0.84F0.16. Two sharp dispersionless modes are found at 0.85 and 1.16 meV in CeFeAsO below the Ce antiferromagnetic (AF) ordering temperature of T N Ce ? 4 K. On warming to above T N Ce ? 4 K, these two modes become one broad dispersionless mode that disappears just above the Fe ordering temperature T N Fe ? 140 K. For superconducting CeFeAsO0.84F0.16, where Fe static AF order is suppressed, we find a weakly dispersive mode center at 0.4 meV that may arise from short-range Ce-Ce exchange interactions. Using a Heisenberg model, we simulate powder-averaged Ce spin wave excitations. Our results show that we need both Ce spin wave and crystal electric field excitations to account for the whole spectra of low-energy spin excitations.  相似文献   

17.
Electron spin resonance (ESR) measurements have been performed on polycrystalline samples of Pr0.6Ca0.4Mn1-xRuxO3 (x = 0, 0.1). The substitution of Ru in the Mn-site strengthens ferromagnetic interactions due to the double exchange between the Mn3+ and Mn4+ species and super-exchange between the Ru5+ and Mn3+ species. The temperature dependence of the ESR spectra indicates development of magnetic phase separation in Pr0.6Ca0.4Mn0.9Ru0.1O3 in contrast with the un-doped sample.  相似文献   

18.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

19.
We provide a detailed study of the reflectivity of multiferroic TbMnO3 for wave numbers from 40 cm-1 to 1000 cm-1 and temperatures 5 K < T < 300 K. Excitations are studied for polarization directions E || a, the polarization where electromagnons are observed, and for E || c, the direction of the spontaneous polarization in this material. The temperature dependencies of eigenfrequencies, damping constants and polar strengths of all modes are studied and analyzed. For E || a and below the spiral ordering temperature of about 27 K we observe a transfer of optical weight from phonon excitations to electromagnons, which mainly involves low-frequency phonons. For E || c an unusual increase of the total polar strength and hence of the dielectric constant is observed indicating significant transfer of dynamic charge probably within manganese-oxygen bonds on decreasing temperatures.  相似文献   

20.
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 ( 0 ⩽ x ⩽ 0.14) system. It was found that the transition temperature T p almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above T p , there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of T p vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7 ∼ 15.4 ? which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than T p conform to the variable-range hopping mechanism. Received 27 August 2002 / Received in final form 2 December 2002 Published online 14 March 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号