首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B , respectively, and let r(a) be the spectral radius of a. We show that if T: AB is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; bA, then there exist a homeomorphism φ: M B M A and a closed and open subset K of M B such that
$ \widehat{T\left( a \right)}\left( y \right) = \left\{ \begin{gathered} \widehat{T\left( e \right)}\left( y \right)\hat a\left( {\phi \left( y \right)} \right) y \in K \hfill \\ \widehat{T\left( e \right)}\left( y \right)\overline {\hat a\left( {\phi \left( y \right)} \right)} y \in M_\mathcal{B} \backslash K \hfill \\ \end{gathered} \right. $ \widehat{T\left( a \right)}\left( y \right) = \left\{ \begin{gathered} \widehat{T\left( e \right)}\left( y \right)\hat a\left( {\phi \left( y \right)} \right) y \in K \hfill \\ \widehat{T\left( e \right)}\left( y \right)\overline {\hat a\left( {\phi \left( y \right)} \right)} y \in M_\mathcal{B} \backslash K \hfill \\ \end{gathered} \right.   相似文献   

2.
Let u = (u n ) be a sequence of real numbers whose generator sequence is Cesàro summable to a finite number. We prove that (u n ) is slowly oscillating if the sequence of Cesàro means of (ω n (m−1)(u)) is increasing and the following two conditions are hold:
$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}  相似文献   

3.
Let {A, B} and {C, D} be diagonalizable pairs of order n, i.e., there exist invertible matrices P, Q and X, Ysuchthat A = P∧Q, B = PΩQ, C =XГY, D= X△Y, where
∧ = diag(α1, α2, …, αn), Ω= diag(βl, β2, …βn),
Г=diag(γ1,γ2,…,γn), △=diag(δl,δ2,…,δn).
Let ρ((α,β), (γ,δ))=|αδ-βγ|/√|α|^2+|β|^2√|γ|^2+|δ|^2.In this paper, it will be proved that there is a permutation τ of {1,2,... ,n} such that
n∑i=1[ρ((αi,βi),(γτ(i),δτ(i)))]^2≤n[1-1/κ^2(Y)κ^2(Q)(1-d2F(Z,W)/n)],
where κ(Y) = ||Y||2||Y^-1||2,Z= (A,B),W= (C, D) and dF(Z,W) = 1/√2||Pz* -Pw*||F.  相似文献   

4.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

5.
LetY be a fence of sizem andr=?m?1/2?. The numberb(m) of order-preserving selfmappings ofY is equal toA r-Br-Cr-Dr, where, ifm is odd, $$\begin{gathered} A_r = 2(r + 1)\sum\limits_{s = 0}^r {\left( {\begin{array}{*{20}c} {r + s} \\ {2s} \\ \end{array} } \right)} 4^s , B_r = 2r\sum\limits_{s = 1}^r {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ {s - 1} \\ \end{array} } \right),} \hfill \\ C_r = 4r\sum\limits_{s = 0}^{r - 1} {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right), D_r = \sum\limits_{s = 0}^{r - 1} {(2s + 1)} \left( {\begin{array}{*{20}c} {r + s - 1} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right)} \hfill \\ \end{gathered} $$ . Ifm is even, a similar formula forb(m) is true. The key trick in the proof is a one-to-one correspondence between order-preserving selfmappings ofY and pairs consisted of a partition ofY and a strictly increasing mapping of a subfence ofY toY.  相似文献   

6.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

7.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

8.
Some integral inequalities for the polar derivative of a polynomial   总被引:1,自引:0,他引:1  
If P(z) is a polynomial of degree n which does not vanish in |z| 1,then it is recently proved by Rather [Jour.Ineq.Pure and Appl.Math.,9 (2008),Issue 4,Art.103] that for every γ 0 and every real or complex number α with |α|≥ 1,{∫02π |D α P(e iθ)| γ dθ}1/γ≤ n(|α| + 1)C γ{∫02π|P(eiθ)| γ dθ}1/γ,C γ ={1/2π∫0 2π|1+eiβ|γdβ}-1/γ,where D α P(z) denotes the polar derivative of P(z) with respect to α.In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J.Approx.Theory,54 (1988),306-313] as a special case.  相似文献   

9.
Here we study the local or global behaviour of the solutions of elliptic inequalities involving quasilinear operators of the type or . We give integral estimates and nonexistence results. They depend on properties of the supersolutions of the equationsL A u=0,L B v=0, which suppose weak coercivity conditions. Under stronger conditions, we give pointwise estimates in case of equalities, using Harnack properties.  相似文献   

10.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

11.
Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1,
lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3
holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.  相似文献   

12.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

13.
Let {X, X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set . Suppose lim n→∞ and , where d=2, if −1<b<0 and d>2(b+1), if b≥0. It is proved that, for any b>−1,
, where Γ(•) is a Gamma function. Research supported by the National Natural Science Foundation of China (10071072).  相似文献   

14.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

15.
We consider the weighted Hardy integral operatorT:L 2(a, b) →L 2(a, b), −∞≤a<b≤∞, defined by . In [EEH1] and [EEH2], under certain conditions onu andv, upper and lower estimates and asymptotic results were obtained for the approximation numbersa n(T) ofT. In this paper, we show that under suitable conditions onu andv, where ∥wp=(∫ a b |w(t)|p dt)1/p. Research supported by NSERC, grant A4021. Research supported by grant No. 201/98/P017 of the Grant Agency of the Czech Republic.  相似文献   

16.
Let X1, X2, ... be i.i.d. random variables with EX1 = 0 and positive, finite variance σ2, and set Sn = X1 + ... + Xn. For any α > −1, β > −1/2 and for κn(ε) a function of ε and n such that κn(ε) log log n → λ as n ↑ ∞ and , we prove that
*Supported by the Natural Science Foundation of Department of Education of Zhejiang Province (Grant No. 20060237 and 20050494).  相似文献   

17.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

18.
Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.  相似文献   

19.
§1 IntroductionAnvarovandLarinov[1]introducedthefollowingprey-predatorsystem:x(t)=x(t)[α-γy(t)-γ∫∞0K1(s)y(t-s)ds-∫∞0∫∞0R1(s,θ)y(t-s)y(t-θ)dθds],y(t)=y(t)[-β μx(t) μ∫∞0K2(s)x(t-s)ds ∫∞0∫∞0R2(s,θ)x(t-θ)x(t-s)dθds],(1)whereα,γ,βandμarepositiveconstants,Ki∈C([0,∞),(0,∞))andRi∈C([0,∞)×[0,∞),(0,∞)),i=1,2.Fortheecologicalsenseofsystem(1),wereferto[1,2]andrefer-encescitedtherein.Sincerealisticmodelsrequiretheinclusionoftheeffectofchangingen-vironment,itmot…  相似文献   

20.
Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号