首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The catalytic effect of manganese(II) on the oxidation of Naphthol Blue Black, with potassium periodate in the presence of 1,10-phenanthroline in weakly acidic media is studied. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance of the dye at 618 nm. Under the optimum conditions (3 × 10−5 mol dm−3 Naphthol Blue Black, 6 × 10−4 mol dm−3 potassium periodate, 1 × 10−4 mol dm−3 1,10-phenanthroline, 0.1 mol dm−3 acetate buffer – pH 4.0, 60 °C, 5 min) manganese(II) in the range 0.08–4 ng cm−3 can be determined by the fixed-time method with a detection limit of 0.025 ng cm−3. The influence of foreign ions on the accuracy of the results is investigated. The developed method is highly sensitive, selective, and simple. The method was applied successfully to the determination of manganese in cucumbers, garlic cloves and parsley leaves. Received June 12, 2000. Revision December 12, 2000.  相似文献   

2.
 We used a battery of different methods to study the association in aqueous sodium dehydrocholate (NaDHC) solutions. This salt associates by a stepwise mechanism. Below (9.6 ± 4.2) × 10−4 mol dm−3 there is a molecular solution with some strongly insoluble dehydrocholic acid produced by hydrolysis. Between (9.6 ± 4.2) × 10−4 and (5.2 ± 2.2) × 10−3 mol dm−3, an aggregate similar to acid soap (NaDHC.HDHC) appears and its amount and the aggregate's size increase with concentration. At =(2.20 ± 0.85) × 10−2 mol dm−3 the aggregates formed have properties usually associated with true micelles, such as solubilisation of water-insoluble dyes. These aggregates increase in size with concentration and change their shape at 8 × 10−2 mol dm−3, giving nonsymmetrical aggregates. The changes in the solution physicochemical properties at these concentrations may be misinterpreted and this explains the different values of the critical micelle concentration reported in the literature for substances with similar structure, such as bile salts. Received: 14 May 2001 Accepted: 10 August 2001  相似文献   

3.

Abstract  

This article proposes a simple and fast method of In(III) determination in the presence of Cd(II) and Pb(II). The catalytic activity of N-methylthiourea was used in the In(III) electroreduction, which also had a slight effect on the electroreduction process of Cd(II) and Pb(II). By applying square wave voltammetry it was possible to determine 3 × 10−7 mol dm−3 In(III) in the presence of 5 × 10−5 mol dm−3 Cd(II) and 1 × 10−4 mol dm−3 Pb(II) in 5 mol dm−3 NaClO4 at pH 2. The calibration curve for In(III) was linear from 3 × 10−7 to 5 × 10−4 mol dm−3. The relative standard deviation for In(III) determination was about 3.0%.  相似文献   

4.
The behaviors of low-concentration aqueous solutions of 10-undecenoic acid and its sodium salt were studied by several techniques. The acid does not have a critical micelle concentration, but gives an emulsion of very small droplets at (0.8–1) ×  10−4 mol dm−3. The emulsion was clearly visible by eye at 0.002 mol dm−3. The sodium salt has a stepwise aggregation process, giving premicellar aggregates at 0.023 ± 0.008 mol dm−3, which grow to form micelles at 0.117 ± 0.007 mol dm−3. The compositions of the solution and the micelles were also studied. Received: 25 February 1999 Accepted in revised form: 21 June 1999  相似文献   

5.
 Adsorptive cathodic stripping voltammetry was used for the determination of furazolidone (FZ) and furaltadone (FD) in borax and phosphate buffers, respectively, using HMDE as working electrode. The influence of different factors upon the peak current response such as accumulation potential, scan rate, preconcentration time, pH and other variables was studied. Furazolidone and furaltadone showed an adsorption character on HMDE in presence of borax and phosphate buffers, respectively. A single cathodic peak at −0.36 V in borax (pH = 9.5) was observed for FZ, while FD gave a cathodic peak at −0.32 V in phosphate buffer (pH = 8.5). The calibration graph showed a linear behavior over the range 3×10−9–9×10−8 mol dm−3 for furazolidone. In the case of FD, concentrations from 3×10−9 to 2×10−7 mol dm−3 gave a linear relationship with the peak current. A detection limit of 2×10−9 mol dm−3 and 1×10−9 mol dm−3 was obtained for furazolidone and furaltadone, respectively. This method was applied to determine these drugs in pharmaceutical formulations, urine and serum samples. Received December 15, 1998. Revision February 4, 2000.  相似文献   

6.
A flow injection chemiluminescence method is proposed for the determination of cobalt, based on the strong catalytic effect of Cobalt(II) (1,10-phenanthroline)3 complex on the lucigenin-periodate reaction in alkaline medium. Under the optimum experimental conditions, the chemiluminescence signal responded linearly to the concentration of cobalt(II) in the 1.0 × 10−9–3.0 × 10−7 g mL−1 range with a detection limit of 4.4 × 10−10 g mL−1 cobalt(II). The relative standard deviation for the determination of 5.0 × 10−8 g mL−1 of cobalt was 2.3% in eleven replicated measurements. The method was successfully applied to the determination of cobalt(II) in pharmaceutical preparations.  相似文献   

7.
We describe a sol-gel approach by which iron hexacyanoferrate is immobilized in silica in a manner suited to investigation by electrochemistry in the absence of a contacting liquid phase. Such physicochemical parameters as concentration of redox sites (C o) and apparent (effective) diffusion coefficient (D app) are estimated by performing cyclic voltammetric and potential step experiments in two time regimes, which are characterized by linear and spherical diffusional patterns, respectively. Values of D app and C o thereby obtained are 2.0 × 10−6 cm2 s−1 and 1.4 × 10−2 mol dm−3. The D app value is larger than expected for a typical solid redox-conducting material. Analogous measurements done in iron(III) hexacyanoferrate(III) solutions of comparable concentrations, 1.0 × 10−2 and 5.0 × 10−3 mol dm−3, yield D app on the level of 5–6 × 10−6 cm2 s−1. Thus, the dynamics of charge propagation in this sol-gel material is almost as high as in the liquid phase. The residual water in the silica, along with the pore structure, are important to the overall mechanism of charge transport, which apparently is limited by physical diffusion rather than electron self-exchange. Under conditions of a solid state voltammetric experiment which utilizes an ultramicroelectrode, encapsulated iron hexacyanoferrate redox centers seem to be in the dispersed colloidal state rather than in a form of the rigid polymeric film. Received: 8 April 1999 / Accepted: 13 August 1999  相似文献   

8.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

9.
The specific ion interaction theory (SIT) was applied to the first hydrolysis constants of Eu(III) and solubility product of Eu(OH)3 in aqueous 2, 3 and 4 mol⋅dm−3 NaClO4 at 303.0 K, under CO2-free conditions. Diagrams of pEuaq versus pCH were constructed from solubilities obtained by a radiometric method, the solubility product log10 Ksp, Eu(OH)3I {Eu(OH)3(s) Euaq3++ 3OHaq } values were calculated from these diagrams and the results obtained are log10 Ksp,Eu(OH)3I = − 22.65 ± 0.29, −23.32 ± 0.33 and −23.70 ± 0.35 for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. First hydrolysis constants {Euaq3++H2O Eu(OH)(aq)2++H+ } were also determined in these media by pH titration and the values found are log10βEu,HI = − 8.19 ± 0.15, −7.90 ± 0.7 and −7.61 ± 0.01 for ionic strengths of 2, 3, and 4 mol⋅dm−3 NaClO4, respectively. Total solubilities were estimated taking into account the formation of both Eu3+ and Eu(OH)2+ (7.7 < pCH < 9) and the values found are: 1.4 × 10−6 mol⋅dm−3, 1.2 × 10−6 mol⋅dm−3 and 1.3 × 10−6 mol⋅dm−3, for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. The limiting values at zero ionic strength were extrapolated by means of the SIT from the experimental results of the present research together with some other published values. The results obtained are log10 Ksp, Eu(OH)3o = − 23.94 ± 0.51 (1.96 SD) and log10βEu,H0 = − 7.49 ± 0.15 (1.96 SD).  相似文献   

10.
The isoelectric point (IEP) of rutile is shifted to higher pH values in the presence of greater than 10−4 mol dm−3 Ba2+, Ca2+ and Mg2+, and when a critical concentration (5 × 10−4 mol dm−3 for Ba2+ and 1 × 10−3 mol dm−3 for Ca2+) is exceeded there is no IEP at all and the ζ potential is always positive. A common intersection point for the ζ-potential curves of the different concentrations of salt is found, but for the various salts the point is shifted from ζ = 0 mV for Mg2+ up to ζ = 20 mV for Ba2+. Between the IEP and the charge-reversal point a rheologically unstable region is discovered. The shear stress of rutile dispersions (2.5 g rutile + 4 g electrolyte solution) at shear rates of 116 s−1 shows the same pH dependence irrespective of the concentration of alkaline-earth metal cations up to 10−2 mol dm−3. The shear stress is less than 1 Pa below pH 3.8 and in the pH range 5–12 it assumes a value between 50 and 80 Pa at 116 s−1 with some scatter; however, no systematic trend with concentration of alkaline-earth metal cations and a rather insignificant decrease with pH at pristine conditions are observed. The acidic branch of the yield stress (pH) and low shear rate viscosity (pH) curves is insensitive to the presence of alkaline-earth metal cations, and the same behaviour is found for the ζ potential. The alkaline-earth metal cations induce an increase in viscosity in the basic region and a shift in the pH of maximum viscosity to high pH values. It was also discovered that the effect different alkaline-earth metal cations have on the rheological properties at the same concentration is different from the effect induced by indifferent electrolytes. When the ζ potential increases the viscosity at high pH is increased in a series which follows the increase in size of the cation. Received: 9 September 1998 Accepted in revised form: 12 January 1999  相似文献   

11.
The specific adsorption of anions (HSO4 , Cl) present in low concentration (c < 10−3 mol dm−3) was studied by radiotracer techniques in the course of the reduction of dichromate (chromate) species in 1 mol dm−3 HClO4 supporting electrolyte. In accordance with the results of preliminary studies reported earlier, enhancement of the anion adsorption was found, induced by some adsorbed intermediates of the reduction process. Potential dependence of the induced adsorption and its correlation with the reduction rate was investigated. The role of adsorption competition between various anions is discussed. It is concluded that study of the induced anion adsorption could be a tool for the investigation of the sorption of intermediates formed in the course of the reduction. Received: 3 May 1999 / Accepted: 10 June 1999  相似文献   

12.
Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core–shell nanoparticles in the presence of glutaraldehyde. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP-immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation. The HRP-immobilized nanoparticles were able to activate hydrogen peroxide (H2O2), which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent product with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.1 × 10−9 mol L−1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 mol L−1 with a detection limit of 1.8 × 10−8 mol L−1. The proposed method was successfully applied for the determination of glucose in human serum sample.  相似文献   

13.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   

14.
 A polarographic catalytic wave of prednisone in the presence of K2S2O8 was observed. The polarographic catalytic wave of prednisone as catalyst was attributed to such chemical reaction parallel to electrode reaction as oxidized the free radical from one electron reduction of the Δ1,4-3 keto group of prednisone to regenerate the original keto group. The catalytic wave can be used for the determination of prednisone with the help of conventional polarographic equipment, such as linear-potential scan polarograph. In 0.12 mol l−1 HAc-0.08 mol l−1 NaAc-0.014 mol l−1 K2S2O8 (pH 4.6) supporting electrolyte, the second-order derivative peak current of the catalytic wave was rectilinear to prednisone concentration in the range of 3.2 × 10−7∼1.6 × 10−5 mol l−1. The detection limit was 8.0 × 10−8 mol l−1. Received August 6, 2001; accepted April 17, 2002; published online July 22, 2002  相似文献   

15.
 Procedures for the preparation at low temperature (80 °C) of uniform colloids consisting of Mn3O4 nanoparticles (about 20 nm) or elongated α-MnOOH particles with length less than 2 μm and width 0.4 μm or less, based on the forced hydrolysis of aqueous manganese(II) acetate solutions in the absence (Mn3O4) or the presence (α-MnOOH) of HCl are described. These solids are only produced under a very restrictive range of reagent concentrations involving solutions of 0.2–0.4 mol dm−3 manganese(II) acetate for Mn3O4 and of 1.6–2 mol dm−3 Mn(II) and 0.2–0.3 mol dm−3 HCl for α-MnOOH. The role that the acetate anions play in the precipitation of these solids is analyzed. It seems that these anions promote the oxidation of Mn(II) to Mn(III), which readily hydrolyze causing precipitation. The evolution of the characteristics of the powders with temperature up to 900 °C is also reported. Thus, Mn3O4 particles transform to Mn2O3 upon calcination at 800 °C; this is accompained by a sintering process. The α-MnOOH sample also experiences several phase transformations on heating. First, it is oxidized at low temperatures (250–450 °C) giving MnO2 (pyrolusite), which is further reduced to Mn2O3 at 800 °C. After this process the particles still retain their elongated shape. Received: 19 October 1999 Accepted: 24 November 1999  相似文献   

16.
The corrosion inhibition of X-70 pipeline steel in saltwater saturated with CO2 at 50 °C with carboxyamido imidazoline has been evaluated by using electrochemical techniques. Techniques included polarization curves, linear polarization resistance, electrochemical impedance, and electrochemical noise measurements. Inhibitor concentrations were 0, 1.6 × 10−5, 3.32 × 10−5, 8.1 × 10−5, 1.6 × 10−4, and 3.32 × 10−4 mol l−1. All techniques showed that the best corrosion inhibition was obtained by adding 8.1 × 10−5 mol l−1 of carboxyamido imidazoline. For inhibitor concentrations higher than 8.1 × 10−5 mol l−1 a desorption process occurs, and an explanation has been given for this phenomenon.  相似文献   

17.

Abstract  

The effect of sodium benzoate (SB) and sodium 4-(phenylamino)benzenesulfonate (SPABS) on the corrosion behavior of low carbon steel has been investigated using gravimetric method in the temperature range of 30–80 °C, velocity range of 1.44–2.02 m s−1 and concentration range of 6.94 × 10−4 to 4.16 × 10−3 mol dm−3 SB and 3.69 × 10−4 to 2.06 × 10−3 mol dm−3 SPABS. Optimization of temperature, fluid velocity, and inhibitors concentration has been made. The obtained results indicate that the inhibition efficiency (w IE %) at 1.56 m s−1 is not in excess of 81.5% at 4.16 × 10−3 mol dm−3 SB and 84.4% at 2.06 × 10−3 mol dm−3 SPABS. The inhibitive performance of these compounds showed an improvement with increasing concentration up to critical values of SB and SPABS; beyond these concentrations no further effectiveness is observed. These inhibitors retard the anodic dissolution of low carbon steel by protective layer bonding on the metal surface. The adsorption of SB and SPABS on the low carbon steel surface was found to obey the Freundlich isotherm model. The FT-IR spectroscopy was used to analyze the surface adsorbed film.  相似文献   

18.
The electrooxidative behaviour and determination of quetiapine (QTP), a dibenzothiazepine derivative and antipsychotic agent, on a glassy carbon disc electrode was investigated using cyclic (CV), linear sweep (LSV), differential pulse (DPV) and Osteryoung square wave voltammetry (OSWV). Fully validated DP and SW voltammetric procedures are described for the determination of QTP. QTP in pH 3.5 acetate buffer solution presents a well-defined anodic response, studied by the proposed methods. This main response was due to the irreversible, diffusion-controlled, one-electron and one-proton oxidation of the aliphatic nitrogen of the piperazine ring. Under optimal conditions, a detection limit of 4.0 × 10−8 mol L−1 for DPV and 1.33 × 10−7 mol L−1 for OSWV, and a linear calibration graph in the range from 4.0 × 10−6 to 2.0 × 10−4 mol L−1 were obtained for both methods. The procedure was successfully applied to the determination of the drug in tablets, human serum and human urine with good recoveries. The detection limits were 6.20 × 10−7 mol L−1 and 5.92 × 10−7 mol L−1 in human serum and 1.44 × 10−7 mol L−1 and 1.31 × 10−6 mol L−1 in human urine, for the DPV and OSWV method, respectively.  相似文献   

19.
5,10,15,20-tetrakis(phenoxy acetic acid) porphyrin (PAAP) was covalently linked to Merrifield chloromethylated resin. Characterization of PAAP and the modified polymeric matrix were performed by 1H NMR, FTIR and elemental analysis. The sorbent was used for the separation and enrichment of the d-electron metals (Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)) at pH 6–8 and of the f-electron metals U(VI) and Th(IV) at pH 4–5. The metals ions were preconcentrated with a concentration factor range of 115–215 and then determined by flame atomic absorption spectrometry or visible spectrophotometry using Arsenazo(III). The retained metals were eluted with 2.0 mol L−1 HNO3 in the case of the d-electron metals and 0.1/0.25 mol L−1 HCl in the case of the f-electron metals. The procedure was validated by analyzing the NIST standard reference material 2709 (San Joaquin Soil). Correspondence: Melek Merdivan, Chemistry Department, Faculty of Arts and Sciences, Dokuz Eylul University, 35160 Buca, Izmir, Turkey  相似文献   

20.
 A new sensitive method exploiting solid-phase spectrophotometry is proposed for the determination of cobalt in pharmaceutical preparations. The chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN) was immobilized on C18 bonded silica loaded into a home-made cell with 1.5 mm of optical path for cobalt determination. Cobalt(II) reacts with TAN on C18 material, at pH 6.0–7.5, to give a coloured complex which has maximum absorption at 572 nm. In this way, the sample was passed through the cell and Co(II) ions were quantitatively retained on the solid-phase. After the direct measurement of light-absorption in the solid phase, only the cobalt was eluted with 0.1 mol L−1 hydrochloric acid. The cell was washed with water and then another sample solution could be passed through the cell. The procedure allowed the determination of cobalt in the range of 10–160 μg L−1 with coefficient of variation of 4.7% (n=10) and apparent molar absorptivity of 2.62 × 106 L mol−1 cm−1 using sample volume of 3-mL. Received May 15, 2000. Revision August 28, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号