首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose of this work was to study the effect of UV irradiation on a microecosystem consisting of several interacting species. The system chosen was of a hypersaline type, where all the species present live at high salt concentration; it comprises different bacteria; a producer, the photosynthetic green alga Dunaliella salina; and a consumer, the ciliated protozoan Fabrea salina, which form a complete food chain. We were able to establish the initial conditions that give rise to a selfsustaining microecosystem, stable for at least 3 weeks. We then determined the effect of UV irradiation on this microecosystem under laboratory‐controlled conditions, in particular by measuring the critical UV exposure for the two main components of the microecosystem (algae and protozoa) under UV‐B irradiances comparable to those of solar irradiation. In our experiments, we varied irradiance, total dose and spectral composition of the actinic light. The critical doses at irradiances of the order of 56 kJ/m2 (typical average daily irradiance in a sunny summer day in Pisa), measured for each main component of the microecosystem (algae and ciliates), turned out to be around 70 kJ/m2 for ciliates and 50 kJ/m2 for D. salina. By exposing microecosystems to daily UV‐B irradiances of the order of 8 kJ/m2 (typical average daily irradiance in a sunny winter day in Pisa), we found no effect at total doses of the order of the critical doses at high irradiances, showing that the reciprocity law does not hold. We have also measured a preliminary spectral‐sensitive curve of the UV effects, which shows an exponential decay with wavelength.  相似文献   

2.
3.
4.
The possible regulation mechanism of red light was determined to discover how to retard UVA‐induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light‐emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm?2, and the total doses of red light were 0.18 J cm?2. Various indicators were measured before and after irradiation, including cell morphology, viability, β‐galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging‐related genes. Red light irradiation retarded the cumulative low‐dose UVA irradiation‐induced skin photoaging, decreased the expression of senescence‐associated β‐galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP‐1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA‐treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways.  相似文献   

5.
Ultraviolet‐B radiation (280–320 nm) has long been associated with the inactivation of microorganisms in the natural environment. Determination of the environmental inactivation kinetics of specific indicator organisms [used as tools in the field of microbial source tracking (MST)] is fundamental to their successful deployment, particularly in geographic regions subject to high levels of solar radiation. Phage infecting Bacteroides fragilis host strain GB124 (B124 phage) have been demonstrated to be highly specific indicators of human fecal contamination, but to date, little is known about their susceptibility to UV‐B radiation. Therefore, B124 phage (= 7) isolated from municipal wastewater effluent, were irradiated in a controlled laboratory environment using UV‐B collimated beam experiments. All B124 phage suspensions possessed highly similar first order log‐linear inactivation profiles and the mean fluence required to inactivate phage by 4 ? log10 was 320 mJ cm?2. These findings suggest that phage infecting GB124 are likely to be inactivated when exposed to the levels of UV‐B solar radiation experienced in a variety of environmental settings. As such, this may limit the utility of such methods for determining more remote inputs of fecal contamination in areas subject to high levels of solar radiation.  相似文献   

6.
The aim of this study was to analyze the photostability and phototoxicity mechanism of anthracene (ANT) in a human skin epidermal cell line (HaCaT) at ambient environmental intensities of sunlight/UV‐R (UV‐A and UV‐B). Photomodification of ANT under sunlight/UV‐R exposure produced two photoproducts, anthrone and 9,10 anthracenedione. Generation of 1O2, O2?? and ?OH was measured under UV‐R/sunlight exposure. Involvement of reactive oxygen species (ROS) was further substantiated by their quenching with free radical quenchers. Photodegradation of 2‐deoxyguanosine and linoleic acid peroxidation showed that ROS were mainly responsible for ANT phototoxicity. ANT generates significant amount of intracellular ROS in cell line. Maximum cell viability (85%) was reduced under sunlight exposure (30 min). Results of MTT assay accord NRU assay. ANT (0.01 μg mL?1) induced cell‐cycle arrest at G1 phase. RT‐PCR demonstrated constitutive inducible mRNA expression of CYP 1A1 and 1B1 genes. Photosensitive ANT upregulates CYP 1A1 (2.2‐folds) and 1B1 (4.1‐folds) genes. Thus, the study suggests that ROS and DNA damage were mainly responsible for ANT phototoxicity. ANT exposure may be deleterious to human health at ambient environmental intensities reaching the earth’s surface through sunlight.  相似文献   

7.
Ultraviolet‐A light (UVA)‐induced DNA damage and repair in red blood cells to investigate the sensitivity of African catfish to UVA exposure is reported. Fishes were irradiated with various doses of UVA light (15, 30, and 60 min day−1 for 3 days). Morphological and nuclear abnormalities in red blood cells were observed in the fish exposed to UVA compared with controls. Morphological alterations such as acanthocytes, crenated cells, swollen cells, teardrop‐like cells, hemolyzed cells, and sickle cells were observed. Those alterations were increased after 24 h exposure to UVA light and decreased at 14 days after exposure. The percentage of apoptosis was higher in red blood cells exposed to higher doses of UVA light. No micronuclei were detected, but small nuclear abnormalities such as deformed and eccentric nuclei were observed in some groups. We concluded that exposure to UVA light induced DNA damage, apoptosis, and morphological alterations in red blood cells in catfish; however, catfish were found to be less sensitive to UVA light than wild‐type medaka.  相似文献   

8.
A concept where an alternating electric field (dielectrophoresis) is used to assemble and align carbon nanocone particles (CNCs) into microscopic wires in self‐supporting polymer films is demonstrated. The particle fraction is kept low (one‐tenth of the percolation threshold of isotropic mixture), which allows uniform dispersion and efficient UV curing. The alignment leads to the conductivity enhancement of three to four orders of magnitude (from ~10?7 to ~10?3 S/m) in the alignment direction. It does not require passing current so the material can be isolated from the alignment electrodes. This prevents electrodes attaching to the film, if the film is adhesive in nature. The alignment can be done using either in‐plane or out‐of‐plane geometries. It is proposed that this concept could be applied in areas such as electrostatic discharge applications where inexpensive conductive or dissipative materials and macroscopic uniformity are prerequisites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
The tensile dynamic mechanical properties and weight degree of swelling for anionic 2‐hydroxyethyl methacrylate‐co‐acrylic acid hydrogels were observed. Fabrication parameters examined were UV‐photopolymerization exposure time, UV‐photopolymerization intensity, and weight percentage crosslinker. The environmental conditions tested were electrolyte compositions of 0.5 and 0.05 M potassium hydroxide under applied frequencies of 0.1, 1, or 10 Hz. The overall maximum and minimum storage modulus was 1.83 ± 0.18 MPa and 68.5 ± 7.2 kPa, respectively, loss modulus was 432 ± 63 and 7.67 ± 3.22 kPa, respectively, and weight degree of swelling was 14.27 ± 1.27 and 1.95 ± 0.33, respectively. The morphology of fabricated hydrogels was examined using scanning electron microscopy showing a range of porous structures over the fabrication and environmental conditions examined, accounting for the variation in mechanical properties. The properties examined are of interest to researchers fabricating, designing, or modeling active hydrogel‐based microfluidic components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Stratospheric ozone depletion is mostly marked over the Antarctic and to a lesser extent over the Arctic, though recent reports have revealed that this also occurs at lower latitudes. Continued depletion of ozone in the lower stratosphere allows more UVR to reach the Earth's surface. Furthermore, it is projected that surface water temperatures will increase by between 0.2 and 2.0°C by the year 2060 and this will directly or indirectly influence algal growth. The interactions between environmental factors are complicated by the existence of different strains (ecotypes) of the same species that may respond differently. To understand the interactive effects of temperature and UV‐B on two strains of Anabaena circinalis, we investigated the damaging effects of UV‐B on cell numbers and photosynthetic characteristics and also examined the effect of temperature on the capacity of cells to recover from such stress. Both strains of A. circinalis responded differently in terms of survival, photosynthetic characteristics and recovery with interactions between temperature and UV‐B. This could be due to the variations in strain‐specific photoreactive mechanisms. This needs to be explored further including more strains and species before definitive conclusions can be reached about effects of global change on cyanobacteria generally.  相似文献   

11.
Photosynthetically active radiation (PAR) and Ultraviolet B (UV‐B) radiation are among the main environmental factors acting on herbal yield and biosynthesis of bioactive compounds in medicinal plants. The objective of this study was to evaluate the influence of biologically effective UV‐B light (280–315 nm) and PAR (400–700 nm) on herbal yield, content and composition, as well as antioxidant capacity of essential oils and polyphenols of lemon catmint (Nepeta cataria L. f. citriodora), lemon balm (Melissa officinalis L.) and sage (Salvia officinalis L.) under controlled greenhouse cultivation. Intensive UV‐B radiation (2.5 kJ m?2 d?1) influenced positively the herbal yield. The essential oil content and composition of studied herbs were mainly affected by PAR and UV‐B radiation. In general, additional low‐dose UV‐B radiation (1 kJ m?2d?1) was most effective for biosynthesis of polyphenols in herbs. Analysis of major polyphenolic compounds provided differences in sensitivity of main polyphenols to PAR and UV‐B radiation. Essential oils and polyphenol‐rich extracts of radiated herbs showed essential differences in antioxidant capacity by the ABTS system. Information from this study can be useful for herbal biomass and secondary metabolite production with superior quality under controlled environment conditions.  相似文献   

12.
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll‐like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV‐induced NF‐κB and AP‐1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA‐based genetic TLR4 inhibition blocks UV‐induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK‐242), a molecularly targeted clinical TLR4 antagonist, blocks UV‐induced NF‐κB and MAP kinase/AP‐1 activity and cytokine expression (Il‐6, Il‐8, and Il‐10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV‐induced cutaneous signaling, and future experiments will explore the potential of TLR4‐directed strategies for prevention of NMSC.  相似文献   

13.
14.
Our previous studies of action spectra for UV‐B‐induced anthocyanin accumulation in cultured carrot cells indicated that a reduced form of pterin, possibly tetrahydrobiopterin, contributes to UV‐B photoreception. In this report, we provide additional evidence for the involvement of pterin in UV‐B light sensing. UV‐B‐induced phenylalanine ammonia‐lyase (PAL) activity was considerably suppressed by N‐acetylserotonin (an inhibitor of tetrahydrobiopterin biosynthesis), and this suppression was partially recovered by adding biopterin or tetrahydrobiobiopterin. In addition, protein(s) specifically bound to biopterin were detected by radiolabeling experiments in N‐acetylserotonin‐treated cells. Furthermore, diphenyleneiodonium, a potent inhibitor of electron transfer, completely suppressed UV‐B‐induced PAL activity. These results suggest the occurrence of an unidentified UV‐B photoreceptor (other than UVR8, the tryptophan‐based UV‐B sensor originally identified in Arabidopsis) with reduced pterin in carrot cells. After reexamining published action spectra, we suggest that anthocyanin synthesis is coordinately regulated by these two UV‐B sensors.  相似文献   

15.
A negative type photosensitive polyimide with alicyclic moiety (NPI) was synthesized from 5‐(2,5‐dioxotetrahydrofuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic anhydride and 4,4‐diaminobenzophenone by one‐step polymerization in m‐cresol. Properties of the polyimides were characterized and a photo‐crosslinking mechanism was investigated using DEPT 13C‐NMR and FT‐IR spectroscopy. The negative polyimide showed good photosensitivity on exposure to UV light from a mercury xenon lamp. The polyimide showed remarkable solubility difference after photo‐ irradiation with an exposure dose of 500 mJ/cm2. The resulting negative pattern of the photo‐cured NPI exhibited 10 μm resolution. Glass transition temperature of the photo‐crosslinked polyimide was about 307°C, which increased by 10°C compared to that of the polyimide before UV exposure. Transmittance of NPI after photo‐irradiation was about 87% at 500 nm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract— There is limited information about the carcinogenic effect of longwave ultraviolet radiation (UVA: 315-400 nm). In particular very little is known about the relevant genotoxic damage caused by physiological doses of UVA radiation. A general response of cells to DNA damage is a delay or arrest of the cell cycle. Conversely, such cellular responses after UVA irradiation would indicate significant genotoxic damage. The aim of this study is to compare cell cycle kinetics of human fibroblasts after UVC (190-280 nm radiation), UVB (280-315 nm radiation) and UVA irradiation. Changes in the cell cycle kinetics were assessed by bivariate flow cytometric analysis of DNA synthesis and of DNA content. After UVC, UVB or UVA irradiation of human fibroblasts a suppression was seen of bromodeoxyuridine (BrdU) incorporation at all stages of S phase. The magnitude of this suppression appeared dose dependent. Maximum suppression was reached at 5-7 h after UVB exposure and directly after UVA exposure, and normal levels were reached 25 h after UVB and 7 h after UVA exposure. The lowered BrdU uptake corresponded with a lengthening of the S phase. No dramatic changes in percentages of cells in G1, S and G2/M were seen after the various UV irradiations. Apparently, UVA irradiation, like UVB and UVC irradiation, can temporarily inhibit DNA synthesis, which is indicative of genotoxic damage.  相似文献   

17.
Depletion of the ozone layer leads to increasing UV‐B radiation on the earth's surface, which may affect weeds and their responses to herbicides. However, the effect of increased UV‐B radiation on weeds and the interaction of weeds and herbicides are still obscure. The objective of this study was to compare glyphosate efficacy on velvetleaf that was grown under with and without increased UV‐B radiation. Leaf area, dry weight and net photosynthesis of velvetleaf seedlings were adversely affected by increased UV‐B radiation. Leaf cuticle wax significantly increased by 28% under increased UV‐B radiation. Glyphosate efficacy on velvetleaf, evaluated by shoot dry weight, was significantly decreased by increased UV‐B radiation. Exposure to increased UV‐B radiation significantly decreased 14C‐glyphosate absorption from 49% to 43%, and also resulted in less 14C‐glyphosate translocation out of treated leaves and less glyphosate accumulation in newly expanded leaves. The decrease in glyphosate efficacy was due to changes in absorption and distribution, which were attributed to increased cuticle wax and decreased photosynthesis caused by increased UV‐B radiation. These results suggest that the responses of weeds to herbicides may be affected by increased UV‐B radiation, to the extent that higher rates may be required to achieve the desired effects.  相似文献   

18.
2,4‐, 2,5‐, 2,6‐ and 3,5‐dihydroxyacetophenone (DHA) used as matrices in matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) were studied by steady‐state and transient absorption spectroscopy, together with DFT calculations at the B3LYP level of theory. All compounds have low fluorescence quantum yields, possibly due to an efficient excited‐state intramolecular proton transfer (ESIPT). Laser flash photolysis (LFP) results showed that, only for 2,4‐DHA, a phototautomer could be detected at λ = 400 nm. Their photochemical stability in solution at different wavelengths and conditions was analyzed by UV–Vis and 1H nuclear magnetic resonance spectroscopy (1H‐NMR), together with thin layer chromatography and ultraviolet laser desorption/ionization mass spectrometry (UV‐LDI‐MS). Only 3,5‐DHA showed decomposition when irradiated, probably because phototautomerization is not possible. Thermal stability studies of these compounds in solid state were also conducted.  相似文献   

19.
Erythema (i.e. visible redness) and DNA damage caused by ultraviolet radiation (UVR) in human skin have similar action spectra and show good correlation after a single exposure to UVR. We explored the potential to use instrumental assessments of erythema as a surrogate for DNA damage after repeated exposures to UVR. We exposed 40 human subjects to three different exposure schedules using two different UVR sources. Cyclobutane‐pyrimidine dimers (CPDs) in skin biopsies were measured by immunofluorescence, and erythema was assessed by both the Erythemal Index (EI) and the Oxy‐hemoglobin (Oxy‐Hb) content. Surprisingly, the skin with the highest cumulative dose ended up with the lowest level of DNA damage, and with the least erythema, as assessed by Oxy‐Hb (but not EI) 24 h after the last UV exposure. Although the level of CPDs, on average, paralleled Oxy‐Hb (R2 = 0.80–0.94, P = 0.03–0.11), the correlation did not hold for the pooled individual measurements (R2 = 0.009, P = 0.37) due to potential individual differences in UV‐induced photoadaptation. We suggest that the methodology may be optimized to improve the correlation between DNA damage level and erythema to enable noninvasive risk assessment based on erythema/Oxy‐Hb content for individual human subjects.  相似文献   

20.
Exposure to elevated UV‐B (eUV‐B) is well known for its phytotoxicity, although studies made with UV‐B exposure and its impact on grasses are limited especially from tropical countries including India. In this study, responses of a valuable grass species, Heteropogon contortus BL‐1, were assessed under eUV‐B (over ambient UV‐B) at different growth stages. Damage caused by eUV‐B was observed in the form of membrane damage and loss of pigments at early stages of growth, whereas tannin, phenol, and protein contents showed their increments at all the growth stages, to overcome the imposed stress. Reducing sugar showed its decline at all the growth stages, whereas starch and sucrose contents were higher mostly at later ages of plant growth. eUV‐B caused a marked variations in anatomical structures with increase of mesophyll and spongy parenchymatous cells in leaves to reduce severity of irradiation, to maintain the growth and productivity. The study also highlights the significant negative influence of eUV‐B on the growth of H. contortus BL‐1 and its adaptive strategy to minimize the negative impacts. With the progression of age, plants although adopted to UV‐B stress with maintenance of productivity, but palatability of forage was affected due to increment of tannin content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号