共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jianbin Tang Huadong Tang Weilin Sun Maciej Radosz Youqing Shen 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5477-5489
A series of imidazolium‐based ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) were synthesized, and their CO2 sorption was studied. The poly(ionic liquid)s had enhanced CO2 sorption capacities and fast sorption/desorption rates compared with room temperature ionic liquids. The effects of the chemical structures, including the types of anion, cation, and backbone of the poly(ionic liquid)s on their CO2 sorption have been discussed. In contrast to room temperature ionic liquids, the polymer with PF anions had the highest CO2‐sorption capacity, while those with BF or Tf2N? anions had the same capacities. The CO2 sorption and desorption of the polymers were fast and reversible, and the sorption was selective over H2, N2, and O2. The measured Henry's constants of P[VBBI][BF4] and P[MABI][BF4] were 26.0 bar and 37.7 bar, which were lower than those of similar room temperature ionic liquids. The preliminary study of the mechanism indicated that the CO2 sorption of the polymer particles was more absorption (the bulk) but less adsorption (the surface). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5477–5489, 2005 相似文献
3.
咪唑类离子液体混合物吸收CO性能研究 《燃料化学学报》2012,40(10):1264-1268
结合常规离子液体和功能型离子液体在吸收CO2方面的优势,将两类咪唑类离子液体进行混合,对其吸收CO2的效果和再生性能进行了实验研究。结果表明,两类咪唑类离子液体混合后流动性明显改善,与CO2接触气液传质顺畅;常规离子液体[bmim][BF4]和[bmim][Tf2N]与胺功能型离子液体[NH2e-mim][BF4]混合物较单一的离子液体吸收CO2的量大,[bmim][CH3CO2]与[NH2e-mim][BF4]混合后较单一的[bmim][CH3CO2]吸收量有明显的减低;随着常规咪唑类离子液体阳离子碳链增长,混合离子液体吸收CO2的效果变强;与胺乙基功能型离子液体混合吸收CO2时,阴离子为[Tf2N]的常规咪唑类离子液体要比阴离子为[BF4]的吸收效果好;离子液体混合物吸收CO2后经再生循环利用10次,混合物质量基本不变,循环使用后吸收CO2性能为初始吸收性能的75%~85%。 相似文献
4.
CO2是导致温室效应的最主要成分,因此碳捕集技术的研究受到学术界和产业界的高度重视。离子液体具有不挥发、不燃烧、热稳定性好、溶解能力强、结构和性质可调节并可循环使用等特性,在CO2的吸收/分离领域展现了广阔的应用前景。本文系统地综述了近年来常规离子液体、功能化离子液体、支撑离子液体膜、聚合离子液体以及离子液体与分子溶剂的混合物在捕集CO2方面的研究进展;讨论了离子液体的阳离子结构、阴离子类型、烷基链长度、阴/阳离子的氟化程度和功能化、离子液体的负载作用和聚合效应以及体系的温度和压力对CO2选择性捕集性能的影响;分析了可能的捕集机理以及各种捕集方法的优点和缺点;提出了目前需要进一步研究的若干重要问题,并对其发展前景进行了展望。 相似文献
5.
以2-溴代异丁酸乙酯(EBiB)为引发剂、溴化铜(CuBr2)与2,2-联吡啶(bpy)为催化剂、抗坏血酸(AC)为还原剂,以[2-(甲基丙烯酰氧基)乙基]三甲基氯化铵(METAC)为单体,在水-DMF体系中通过原子转移自由基聚合(ATRP)成功合成了分子量可控的聚甲基丙烯酰氧基乙基三甲基氯化铵(P[META][Cl])。将P[META][Cl]经离子交换形成氢氧化物后,再与甘氨酸进行离子交换,干燥后制得了一种可用于吸收CO_2的聚氨基酸离子液体(P[METAC][Gly])固体吸附材料。通过核磁共振(1 H-NMR)、尺寸排阻色谱法(SEC)和热重(TG)等测试方法表征了产物的化学结构与物化性能。结果显示,在CO_2气氛,40℃常压下,P[METAC][Gly]的CO_2吸收能力高达5.20%(质量分数),且能变温循环使用。 相似文献
6.
Dr. Jiang Gong Prof. Markus Antonietti Prof. Jiayin Yuan 《Angewandte Chemie (International ed. in English)》2017,56(26):7557-7563
CO2 capture is a pressing global environmental issue that drives scientists to develop creative strategies for tackling this challenge. The concept in this contribution is to produce site-specific nitrogen doping in microporous carbon fibers. Following this approach a carbon/carbon heterojunction is created by using a poly(ionic liquid) (PIL) as a “soft” activation agent that deposits nitrogen species exclusively on the surface of commercial microporous carbon fibers. This type of carbon-based biphasic heterojunction amplifies the interaction between carbon fiber and CO2 molecule for unusually high CO2 uptake and resistive sensing. 相似文献
7.
Samanvaya S. Gaur Katelynn J. Edgehouse Aidan Klemm Peiran Wei Burcu Gurkan Emily B. Pentzer 《Journal of polymer science. Part A, Polymer chemistry》2021,59(23):2980-2989
Many ionic liquids (ILs) have good solubilities of CO2 but the high viscosity of ILs makes them cumbersome and kinetically limits gas uptake. Encapsulation of ILs is an effective approach to overcoming these limitations. In capsules with a core of IL, the chemical composition of the shell impacts performance. Here, we report the preparation of capsules with a core of the IL [Bmim][PF6] and polymer composite shell, then evaluate how the identity of the polymer impacts CO2 uptake. IL-in-oil Pickering emulsions stabilized by nanosheets are used, with capsules formed by interfacial polymerization between different diamines and diisocyanates (e.g., shells are polyurea and nanosheets). The capsules contain 60–80 wt% IL and the composition was verified using Fourier transform infrared spectroscopy. Optical microscopy, scanning electron microscopy, and particle sizing data showed spherical, discrete capsules with 50–125 μm in diameter. All capsules are stable up to 250°C. Brunauer–Emmett–Teller analysis of CO2 gas uptake data showed that different polymer compositions led to different CO2 uptake properties, with capacity ranging from 0.065 to 0.025 moles of CO2/kg sorbent at 760 torr and 20°C. This work demonstrates that the polymer identity of the shell impacts gas uptake properties and supports that shell composition can tailor performance. 相似文献
8.
The development of novel materials for carbon dioxide (CO2) capture is of great importance in resource utilization and environmental preservation. In this study, imidazolium‐based ionic liquids (ILs) with symmetrical ester and hydroxyl groups were prepared, and their corresponding polymer were synthesized by melt condensation polymerization. The structure and properties of the poly(ionic liquid)s (PILs) were characterized by proton nuclear magnetic resonance, gel permeation chromatograph, differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy. In addition, the CO2 sorption behavior of the IL monomers and PILs were studied at a low pressure (648.4 mmHg CO2) and under a temperature of 25°C using a thermogravimetric analyzer. The CO2 sorption capacity of 1,3‐bis(2‐hydroxyl ethyl)‐imidazolium hexafluorophosphate ([HHIm]PF6, 10 mol%) was the highest among all the IL monomers and PILs studied. This capacity is also much higher than those reflected of previously reported ILs. Moreover, the sorption equilibrium of [HHIm]PF6 was achieved within a short time. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
9.
Jiaxi Yang Dan Gao Yong Pan Yuanyuan Cao Heng Zhang Yating Chen 《International journal of quantum chemistry》2024,124(1):e27327
The combination of zeolitic imidazolate framework-8 (ZIF-8) and ionic liquids (ILs) to create porous ionic liquids (PILs) is highly significant for efficient carbon dioxide (CO2) capture and the advancement of carbon capture, utilization, and storage (CCUS) technologies. To further investigate the CO2 capture characteristics of different PILs, two different-sized ZIF-8 structures and two functionalized ILs were prepared. Additionally, the enhancement factor of the reaction process was calculated using the dual-film theory and mass transfer coefficient. The results demonstrated that the original [PMIm]Cl had low CO2 absorption capacity at ambient temperature and pressure, whereas the functionalized ILs had a maximum CO2 capture capacity of approximately .31 mol/mol, with the 20 wt% concentration of tetraethylene pentamine-2-methylimidazole ([TEP][MIm]) exhibiting the highest CO2 capture capacity of around 1.93 mol/mol. The synthesized PILs demonstrated a maximum CO2 capture capacity of approximately 2.22 and 2.16 mol/mol at 20 and 10 wt% ionic concentrations, respectively, with a porous ionic liquid addition of 1.0/100 g. The corresponding enhancement factors were 1.53 and 1.59, respectively. These findings have significant implications for CCUS technology. 相似文献
10.
以表面活性剂修饰的MCM-41为载体,采用浸渍法制备了负载离子液体[NH2p-mim][PF6]的二氧化碳吸附剂,考察了表面活性剂对离子液体在MCM-41上分散的影响以及所导致的CO2吸附性能的变化.利用红外光谱(FT-IR),X-射线衍射(XRD),高分辨透射电子显微镜(HRTEM),热重分析(TG)技术对所合成的负载型离子液体吸附剂进行了表征研究,并与其吸附CO2的性能变化、离子液体与表面活性剂相互作用方式等因素进行了关联.结果表明:MCM-41负载离子液体后对CO2的吸附性能略有提高,而经表面活性剂修饰的MCM-41负载离子液体后,对CO2的吸附容量较载体本身提高了2.5倍.这一方面是因为表面活性剂胶束改善了MCM-41上离子液体的分散性,另一方面是表面活性剂胶束对离子液体分子上电荷分布的影响,导致离子液体内部阴阳离子之间的相互作用减弱,从而引起离子液体中-NH2上N原子电子云密度增大,使其与CO2作用更容易.CO2在经表面活性剂修饰后的MCM-41负载离子液体[NH2p-mim][PF6]吸附剂上的吸附受扩散控制,其吸附-脱附CO2所需能量较小,经过5次吸附-脱附循环后,其吸附性能仍保持稳定.热重分析结果表明,经表面活性剂修饰后的MCM-41负载离子液体吸附剂在100℃下氮气气氛再生时不会发生性质改变. 相似文献
11.
Desulfurization of flue gas: SO(2) absorption by an ionic liquid 总被引:7,自引:0,他引:7
Wu W Han B Gao H Liu Z Jiang T Huang J 《Angewandte Chemie (International ed. in English)》2004,43(18):2415-2417
12.
Encapsulated Ionic Liquids for CO2 Capture: Using 1‐Butyl‐methylimidazolium Acetate for Quick and Reversible CO2 Chemical Absorption. 下载免费PDF全文
Cristian Moya Prof. Noelia Alonso‐Morales Prof. Miguel A. Gilarranz Prof. Juan J. Rodriguez Prof. Jose Palomar 《Chemphyschem》2016,17(23):3891-3899
The potential advantages of applying encapsulated ionic liquid (ENIL) to CO2 capture by chemical absorption with 1‐butyl‐3‐methylimidazolium acetate [bmim][acetate] are evaluated. The [bmim][acetate]‐ENIL is a particle material with solid appearance and 70 % w/w in ionic liquid (IL). The performance of this material as CO2 sorbent was evaluated by gravimetric and fixed‐bed sorption experiments at different temperatures and CO2 partial pressures. ENIL maintains the favourable thermodynamic properties of the neat IL regarding CO2 absorption. Remarkably, a drastic increase of CO2 sorption rates was achieved using ENIL, related to much higher contact area after discretization. In addition, experiments demonstrate reversibility of the chemical reaction and the efficient ENIL regeneration, mainly hindered by the unfavourable transport properties. The common drawback of ILs as CO2 chemical absorbents (low absorption rate and difficulties in solvent regeneration) are overcome by using ENIL systems. 相似文献
13.
SHANNON Matthew S. HINDMAN Michelle S. DANIELSEN Scott. P. O. TEDSTONE Jason M. GILMORE Ricky D. BARA Jason E. 《中国科学:化学(英文版)》2012,55(8):1638-1647,1,2
To date, few reports have been concerned with the physical properties of the liquid phases of imidazoles and benzimidazoles-potential starting materials for a great number of ionic liquids. Prior research has indicated that alkylimidazole solvents exhibit different, and potentially advantageous physical properties, when compared to corresponding imidazolium-based ionic liquids. Given that even the most fundamental physical properties of alkylimidazole solvents have only recently been reported, there is still a lack of data for other relevant imidazole derivatives, including benzimidazoles. In this work, we have synthesized a series of eight 1-n-alkylbenzimidazoles, with chain lengths ranging from ethyl to dodecyl, all of which exist as neat liquids at ambient temperature. Their densities and viscosities have been determined as functions of both temperature and molecular weight. Alkylbenzimidazoles have been found to exhibit viscosities that are more similar to imidazolium-based ILs than alkylimidazoles, owed to a large contribution to viscosity from the presence of a fused ring system. Solubilities of CO2 and SO2, two species of concern in the emission of coal-fired power generation, were determined for selected alkylbenzimidazoles to understand what effects a fused ring system might have on gas solubility. For both gases, alkylbenzimidazoles were determined to experience physical, non-chemically reactive, interactions. The solubility of CO2 in alkylbenzimidazoles is 10%-30% less than observed for corresponding ILs and alkylimidazoles. 1-butylbenzimidazole was found to readily absorb at least 0.333 gram SO2 per gram at low pressure and ambient temperature, which could be readily desorbed under an N2 flush, a behavior more similar to imidazolium-based ILs than alkylimidazoles. Thus, we find that as solvents for gas separations, benzimidazoles share characteristics with both ILs and alkylimidazoles. 相似文献
14.
Gong Q Klankermayer J Blümich B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(49):13795-13799
para-Hydrogen induced polarization (PHIP) NMR spectroscopy emerges as an efficient and robust method for on-line monitoring of gas-phase hydrogenation reactions. Here we report detailed investigations of supported ionic liquid phase (SILP) catalysts in a continuous gas-phase hydrogenation of propene with PHIP NMR spectroscopy. A relocation of the rhodium complex in the thin layer of ionic liquid in the SILP catalyst at the initial stage of the propene hydrogenation is demonstrated. PHIP NMR spectroscopy can provide profound insight into the evolution of SILP catalysts during hydrogenation reactions. 相似文献
15.
Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF‐8 for Membrane‐Based CO2 Capture 下载免费PDF全文
Yujie Ban Zhengjie Li Prof. Dr. Yanshuo Li Yuan Peng Hua Jin Wenmei Jiao Ang Guo Po Wang Prof. Dr. Qingyuan Yang Prof. Dr. Chongli Zhong Prof. Dr. Weishen Yang 《Angewandte Chemie (International ed. in English)》2015,54(51):15483-15487
Fine‐tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF‐8 to be between CO2 and N2 by confining an imidazolium‐based ionic liquid [bmim][Tf2N] into ZIF‐8’s SOD cages by in‐situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid‐modified ZIF‐8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2/N2 and CO2/CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2/CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading. 相似文献
16.
负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能 《燃料化学学报》2016,44(1):106-112
采用浸渍蒸发法将四甲基铵甘氨酸([N1111][Gly])和四甲基铵赖氨酸([N1111][Lys])两种离子液体分别负载到硅胶(SG)表面,利用EA、TGA、BET和FT-IR等技术对所得到的吸附剂进行表征,考察了离子液体种类、离子液体负载量和温度等条件对其CO_2吸附性能的影响。结果表明,离子液体成功负载到硅胶表面,所制得的负载型氨基酸离子液体对二氧化碳具有良好的吸附性能。在所考察的温度范围(303.15-323.15 K)内,温度越高,平衡吸附量越小;在负载量为10%-60%,随着负载量的增加,平衡吸附量先增加后减小。对于[N1111][Gly]/SG,当负载量为22.4%(质量分数)、吸附温度为30℃、压力为0.1 M Pa时,二氧化碳的平衡吸附量可达到41 mg/g(相对于1 mol AAILs吸附0.62 mol CO_2),而且,吸附20 min即可达到平衡吸附量的90%。吸附剂在循环使用六次之后,其结构与性能均保持良好。 相似文献
17.
18.
Szesni N Kaiser M Putzien S Fischer RW 《Combinatorial chemistry & high throughput screening》2012,15(2):170-179
Supported Ionic Liquid Phase (SILP) catalysts have been prepared by effective immobilization of [Cu(TMEDA)(OH)]Cl in a nano-metric film of an ionic liquid on various oxidic support materials. The catalysts were tested for the oxidative homocoupling of 1-alkynes to the corresponding diynes in in a combined high throughput and conventional batch reaction approach. Among the screened support materials silica based materials performed best. The results indicate that for the specific reaction the thickness of the ionic liquids layer and therefore the mobility of the homogeneous copper complex within the ionic liquid layer as deduced from solid state nmr measurements have major impact on the catalytic performance. The optimized catalysts could be recycled up to four times without any loss of activity. 相似文献
19.
二氧化碳(CO2)是一种来源丰富的C1资源,在温和条件下实现CO2的资源化利用是当前研究的热点之一。CO2环加成反应制备环状碳酸酯是CO2资源化利用的重要途径之一。环状碳酸酯是电池电解液的优良介质,可承受较恶劣的光、热及化学变化;同时也是聚氨酯、聚碳酸酯等精细化工中间体,广泛应用于医药、化工、纺织、印染等领域。非均相离子液体催化剂具有化学和热稳定性好、合成过程简单和可重复使用等优势。本文重点总结了近年来非均相离子液体催化剂在CO2和环氧化物环加成反应中的应用,并对非均相离子液体催化CO2环加成反应的发展进行展望。 相似文献