首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.  相似文献   

2.
Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1-4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved.  相似文献   

3.
Fragmentation of polyethers, such as poly(ethylene glycol) (PEG), poly(propylene glycol) and poly(tetramethylene glycol) was analyzed by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) using a quadrupole ion trap time-of-flight mass spectrometer (QIT-ToF). The Li adduct ion provided more abundant fragments than the Na and K adduct ions in the MS/MS spectra. A previous study had demonstrated four series fragments of hydroxyl-, vinyl- and formyl-terminated ions, as well as distonic cations, in high-energy fast atom bombardment MS/MS and MALDI collision-induced dissociation measurements of poly(ethylene glycol). In the present study, the low-energy MS/MS measurements using MALDI-QIT-ToF, showed hydroxyl-, vinyl- and formyl- terminated fragments with or without other fragment groups, but not distonic cations. The fragmentation depended on the types of polyethers examined. MS/MS measurements using MALDI-QIT-ToF are expected to allow structural characterization of unknown components of polyethers.  相似文献   

4.
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.  相似文献   

5.
An ion source incorporating a fibre optic interface has been constructed for atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. The configuration has been applied to the study of linear and complex oligosaccharides. Multi-stage tandem mass spectrometry (MSn, n = 2-4) experiments carried out in the ion trap enable extended fragmentation pathways to be investigated that yield structural information. Collisional activation of sodiated oligosaccharides, as demonstrated on the model compound maltoheptaose, produces primarily B and Y fragments resulting from cleavage of glycosidic bonds; fragments from cross-ring cleavages are also observed following further stages of tandem mass spectrometry, providing additional linkage information. The analyses of mixtures of complex oligosaccharides are demonstrated for N-linked glycans from chicken egg glycoproteins and a ribonuclease glycan mixture. Mass spectrometric and tandem mass spectrometric data for sugars with molecular weights up to 4000 Da is shown for mixtures of linear dextrans and N-linked glycans. The use of MSn (n = 3, 4) on these complex molecules enabled structural information to be elucidated that confirms data observed in the MS/MS spectra.  相似文献   

6.
Positive- and negative-ion MSn spectra of chicken egg yolk glycopeptides binding a neutral and a sialylated N-glycan were acquired by using electrospray ionization linear ion trap time-of-flight mass spectrometry (ESI-LIT-TOFMS) and collision-induced dissociation (CID) with helium as collision gas. Several characteristic differences were observed between the positive- and negative-ion CID MSn (n = 2, 3) spectra. In the positive-ion MS2 spectra, the peptide moiety was presumably stable, but the neutral N-glycan moiety caused several B-type fragmentations and the sialylated N-glycan almost lost sialic acid(s). In contrast, in the negative-ion MS2 spectra, the peptide moiety caused several side-chain and N-glycan residue (e.g., N-acetylglucosamine (GlcNAc) residue) fragmentations in addition to backbone cleavages, but the N-glycan moieties were relatively stable. The positive-ion MS3 spectra derived from the protonated peptide ion containing a GlcNAc residue (203.1 Da) provided enough information to determine the peptide amino-acid sequence including the glycosylation site, while the negative-ion MS3 spectra derived from the deprotonated peptide containing a 0,2X1-type cross-ring cleavage (83.1 Da) complicated the peptide sequence analysis due to side-chain and 0,2X1 residue related fragmentations. However, for the structural information of the N-glycan moiety of the glycopeptides, the negative-ion CID MS3 spectra derived from the deprotonated 2,4A6-type cross-ring cleavage ion (neutral N-glycan) or the doubly deprotonated B6-type fragment ion (sialylated N-glycan) are more informative than are those of the corresponding positive-ion CID MS3 spectra. Thus, the positive-ion mode of CID is useful for the analyses of peptide amino-acid sequences including the glycosylation site. The negative-ion mode of CID is especially useful for sialylated N-glycan structural analysis. Therefore, in the structural analysis of N-glycopeptides, their roles are complementary.  相似文献   

7.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

8.
Fully-protected C-terminal free peptides can be conveniently analyzed by high-resolution electrospray tandem mass spectrometry (ESI-MS/MS) in a quadrupole quadrupole time-of-flight tandem hybrid mass spectrometer, operated in the negative (-) ionizaionization mode. The unusual choice of negative ions in mass spectrometry applications to peptide analysis was needed to obtain exhaustive sequence and structural data. The low-energy collision-induced dissociation (CID) experiments provided, in fact, tandem mass spectra displaying highly diagnostic fragments with a good signal-to-noise ratio. The method is applied to segments of porcine calcitonin (Cal), Cal (1016, 1), Cal (1724, 2) and Cal (2528, 3) whose [M H]- deprotonated molecular ions provided low-energy CID mass spectra which allow the evaluation either of the primary structure of the peptide and of the location of the side-chain protective groups. ESI (+) MS can be conveniently used, in the high resolution mode, to achieve precise information on the elemental composition of the examined peptides.  相似文献   

9.
Multistage mass spectrometry, as implemented using low-energy collision-induced dissociation (CID) analysis in three-dimensional (3D) quadrupole ion traps (QITs), has become a powerful tool for the investigation of protein glycosylation. In addition to the well-known combination of QITs with electrospray ionization (ESI), also a matrix-assisted laser desorption/ionization--quadrupole ion trap--reflectron time-of-flight (MALDI-QIT-rTOF) mass spectrometer has recently become available. This study systematically investigates the differences between these types of instrument, as applied to characterization of glycopeptides from human antithrombin. The glycopeptides were obtained by tryptic digestion followed by lectin-affinity purification. Some significant differences between the ESI-QIT and MALDI-QIT-rTOF approaches appeared, most of them are causally related to the desorption/ionization process. The combination of a vacuum MALDI source with an ion-trap analyzer accentuates some characteristic differences between MALDI and ESI due the longer time frame needed for the trapping process. In contrast to ESI, MALDI generated ions that exhibited considerable metastable fragmentation during trapping. The long time span of the QIT process (ms range) compared with that for conventional rTOF experiments (micros range) significantly magnified the extent of this metastable fragmentation. With the investigated glycopeptides, a complete depletion of the terminal sialic acids of the glycopeptides as well as a variety of other fragment ions was already found in the MS1 spectra from the MALDI-QIT-rTOF instrument. The positive ion low-energy CID spectra (MS2) of the selected glycopeptides obtained using the two different QIT equipped instruments were found to be quite similar. In both approaches, fragmentation of the glycan and peptide structures occurred sequentially, allowing unambiguous sequence determination. In the case of ESI-QIT-MS, fragmentation of the glycan structure occurred at the MS2 stage and fragmentation of the peptide structure was obtained only at the MS3 stage, which indicates the necessity of multistage CID experiments for complete structure elucidation. The MALDI-QIT-rTOF instrument yielded both kinds of fragments at the MS2 stage but without mutual interference.  相似文献   

10.
Fixed-energy sequential tandem mass spectrometry (MS(n)) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of six isomers of Gal-Fucalpha-OBenzyl disaccharides. Under collision-induced dissociation (CID), sodiated molecular species generated in the positive-ion electrospray ionization mode yield simple and predictable mass spectra. Information on interglycosidic linkages and configurations can be deduced from the relative intensities of the selected diagnostic fragments arising from the glycosidic bond cleavages and corroborated by the fragments arising from cross-ring cleavages. As the CID patterns are not dependent on the number of prior tandem mass spectrometric steps, structures can be unambiguously assigned by matching the spectra with a library. The rules governing the fragmentation behavior of this class of oligosaccharides were tested for a representative isomeric disaccharide, Glcbeta1,3Fucalpha-OAllyl. The findings establish a basis for using MS(n) with a quadrupole ion trap instrument to elucidate structures of hexose-fucose subunits from more complicated oligosaccharides. Energy-resolved mass spectra were also acquired by CID tandem triple-quadrupole mass spectrometry. The breakdown behavior of the molecular ions revealed patterns which could differentiate stereoisomers of Gal-Fuc disaccharides over a range of collision energy from 20 to 50 eV.  相似文献   

11.
Oxidized deoxynucleosides are widely used as biomarkers for DNA oxidation and oxidative stress assessment. Although gas chromatography mass spectrometry is widely used for the measurement of multiple DNA lesions, this approach requires complex sample preparation contributing to possible artifactual oxidation. To address these issues, a high performance liquid chromatography (HPLC)-tandem mass spectrometric (LC-MS/MS) method was developed to measure 8-hydroxy-2'-deoxyguanosine (8-OH-dG), 8-hydroxy-2'-deoxyadenosine (8-OH-dA), 2-hydroxy-2'-deoxyadenosine (2-OH-dA), thymidine glycol (TG), and 5-hydroxy-methyl-2'-deoxyuridine (HMDU) in DNA samples with fast sample preparation. In order to selectively monitor the product ions of these precursors with optimum sensitivity for use during quantitative LC-MS/MS analysis, unique and abundant fragment ions had to be identified during MS/MS with collision-induced dissociation (CID). Positive and negative ion electrospray tandem mass spectra with CID were compared for the analysis of these five oxidized deoxynucleosides. The most abundant fragment ions were usually formed by cleavage of the glycosidic bond in both positive and negative ion modes. However, in the negative ion electrospray tandem mass spectra of 8-OH-dG, 2-OH-dA, and 8-OH-dA, cleavage of two bonds within the sugar ring produced abundant S1 type ions with loss of a neutral molecule weighing 90 u, [M - H - 90]-. The signal-to-noise ratio was similar for negative and positive ion electrospray MS/MS except in the case of thymidine glycol where the signal-to-noise was 100 times greater in negative ionization mode. Therefore, negative ion electrospray tandem mass spectrometry with CID would be preferred to positive ion mode for the analysis of sets of oxidized deoxynucleosides that include thymidine glycol. Investigation of the fragmentation pathways indicated some new general rules for the fragmentation of negatively charged oxidized nucleosides. When purine nucleosides contain a hydroxyl group in the C8 position, an S1 type product ion will dominate the product ions due to a six-membered ring hydrogen transfer process. Finally, a new type of fragment ion formed by elimination of a neutral molecule weighing 48 (CO2H4) from the sugar moiety was observed for all three oxidized purine nucleosides.  相似文献   

12.
Negative-ion atmospheric pressure chemical ionization (APCI) mass spectrometry and in-source collisionally induced dissociation (CID) were employed to obtain structural information of lutein esters from marigold extract. Both molecular ions and structurally significant fragments corresponding to the loss of fatty acids were observed in high abundance in the current study. Six lutein diesters including lauroylmyristoyl-lutein (LML), dimyristoyl-lutein (dML), myristoylpalmitoyl-lutein (MPL), dipalmitoyl-lutein (dPL), palmitoylstearoyl-lutein (PSL) and distearoyl-lutein (dSL) were characterized in a marigold flower extract. Breakdown curves (plots of relative ion abundance vs. internal energy) of three lutein diesters were established by monitoring the relative ion abundance of molecular and fragment ions at different cone voltages during negative-ion APCI-LC/MS analysis.  相似文献   

13.
Structural analyses of various glycans attached to proteins and peptides are highly desirable for elucidating their biological roles. An approach based on mass spectrometry (MS) combining both collision-induced dissociation (CID) and electron-capture dissociation (ECD) in the positive- and negative-ion modes has been proposed as a simple and direct method of assigning an O-glycan without releasing it from the peptide and of determining the amino acid sequence of the peptide and glycosylation site. The instrument used is an electrospray ionization (ESI) linear ion trap (LIT) time-of-flight (TOF) mass spectrometer with tandem LITs for CID by He gas and ECD. The proposed approach was tested with two synthetic O-glycopeptides binding a sialyl Lewis x (sLe(x)) oligosaccharide and a 3'-sialyl N-acetyllactosamine (3'-SLN) on a serine (S) residue. In the negative-ion mode, the CID MS(2) spectra of O-glycopeptides showed a relatively abundant glycoside-bond cleavage between the core N-acetylglucosamine (GlcNAc) and serine (S) that yields deprotonated C(3)-type fragment ions of O-glycan and deprotonated Z(0)-type peptide ions. The structure of the sLe(x) (3'-SLN) oligosaccharide was simply assigned by comparing the CID MS(3) spectrum derived from the C(3)-type fragment ion with the CID MS(2) spectra of the sLe(x) and sLe(a) (3'- and 6'-SLN) standards (i.e., negative-ion MS(n) spectral matching). The amino acid sequence of the peptide including the glycosylation site was determined from the ECD MS(2) spectrum in the positive-ion mode.  相似文献   

14.
The characteristics shown in the electrospray ionization/ion trap mass spectra of ring-opened LI-F antibiotics (cyclic depsihexapeptides with a 15-guanidino-3-hydroxypentadecanoic group as a side-chain) were examined. Collision-induced dissociation (CID) MS of protonated molecules of the depsipeptides produced many fragment ions. Most of these fragment ions contained information for determining the amino acid sequences of antifungal antibiotics. The fragment ions were classified into six groups (b(n'), B(n'), B'(n'), beta(n'), y(n) and Y(n)). According to MS(3) spectra, the B(n'), B'(n) and beta(n) ions can be considered to be derived with a cleavage at each CO--NH in the peptide bonds of [MH--NH(3)](+),[MH--NH(3)--OH](+) and [MH--NH(3)--2H(2)O](+), respectively, in ion trap MS. Losses of NH(3) and H(2)O from the amino acid residues of the depsipeptides in ion trap MS are likely to be smaller than those from the side-chain. The measurements with electrospray ionization (ESI)/ion trap MS of depsipeptides with a side chain containing polar groups may provide useful information for structural determination.  相似文献   

15.
The determination of tetra- to octachlorodibenzo-p-dioxins and tetra- to octachlorodibenzofurans (PCCD/Fs) by high-resolution gas chromatography/tandem mass spectrometry (HRGC/MS/MS) and high-resolution gas chromatography/triple mass spectrometry (HRGC/MS(3)) in a quadrupole ion trap, equipped with an external ion source, is presented. MS/MS involves a typical four-step process, namely ionization, parent ion isolation, collision-induced dissociation (CID) and mass analysis of the daughter ions. For the MS(3) experiment, the MS/MS scan function is used with the addition of selected daughter ion isolation, their CID and the mass analysis of second-generation product ions called 'grand-daughter ions.' For both methods, the energies necessary for the CID of the 17 PCDD/Fs were determined and optimized using multiple scan functions with different CID amplitudes. The CID efficiency, defined as the signal ratio of fragment ions detected from the major dissociation channels to molecular ions isolated, was 1.15-2.40 V for parent ion dissociation (MS/MS) and 1.05-1.50 V for daughter ion dissociation (MS(3)) and for all the chloro congeners. The same sensitivity (1 pg microl(-1)) can be reached with both the MS/MS and MS(3) methods and linear responses were obtained between 1 and 100 pg microl(-1) injected.  相似文献   

16.
Paeoniflorin standard was first investigated by electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) using a sustained off-resonance irradiation (SORI) collision-induced dissociation (CID) method at high mass resolution. The experimental results demonstrated that the unambiguous elemental composition of product ions can be obtained at high mass resolution. Comparing MS/MS spectra and the experimental methods of hydrogen and deuterium exchange, the logical fragmentation pathways of paeoniflorin have been proposed. Then, the extracts of the traditional Chinese medicine Paeonia lactiflora Pall. were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). By comparison with the ESI-FTICR-MS/MS data of paeoniflorin, the isomers paeoniflorin and albiflorin in Paeonia lactiflora Pall. have been identified using HPLC/MS with CID in an ion trap and in-source CID. Furthermore, using the characteristic fragmentation pathways, the retention times (t(R)) in HPLC and MS/MS spectra, the structures of three other kinds of monoterpene glycoside compounds have been identified on-line without time-consuming isolation. Thus an HPLC/ESI-MS method for the analysis of constituents in Paeonia lactiflora Pall. has been established.  相似文献   

17.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   

18.
In this study, we benefit from the combination of liquid chromatography (LC)/time-of-flight (TOF) MS accurate mass measurements to generate elemental compositions of ions and LC/ion trap multiple MS (MSn) providing complementary structural information, which is useful for the elucidation of unknown organic compounds at trace levels in complex food extracts. We have applied this approach to investigate different citrus fruits extracts, and we have identified two post-harvest fungicides (imazalil and prochloraz), the main degradation product of imazalil ([M + H]+, m/z 257) and a non-previously reported prochloraz degradation product ([M + H]+, m/z 282). The database-mediated identification of the parent compounds was based on the generated elemental composition obtained from accurate mass measurements and additional qualitative information from the high resolution chlorine isotopic clusters of both the protonated molecules (imazalil, [M + H]+ 297.0556, <0.1 ppm error, 2-Cl; prochloraz, [M + H]+ 376.0381, 1.9 ppm error, 3-Cl) and their characteristic fragments ions (imazalil: m/z 255 and 159; prochloraz: m/z 308 and 266). The correlation between the structural information provided by ion trap MS/MS fragmentation pathways of the parent species and the TOF accurate mass elemental composition data of the degradation products were the key to elucidate the structures of the degradation products of both post-harvest fungicides. Finally, where standards were not available (prochloraz), further confirmation was obtained by synthesizing the proposed degradation product by acid hydrolysis of the parent standard and confirmation by LC/TOF-MS.  相似文献   

19.
Presented is a method for analyzing sulfated peptides, and differentiating the post-translational modification (PTM) from its isobaric counterpart phosphorylation, using quadrupole time-of-flight (Qq/TOF) mass spectrometry (MS) and positive ion nanoelectrospray MS/MS. A set of commercially available sulfo- and phosphopeptide standards was analyzed via in-source dissociation and MS/MS to generate fragmentation signatures that were used to characterize and differentiate the two modifications. All of the phosphorylated peptides retained their +80 Da modifications under collision-induced decomposition (CID) conditions and peptide backbone fragmentation allowed for the site-specific identification of the modification. In sharp contrast, sulfated peptides lost SO3 from the precursor as the collision energy (CE) was increased until only the non-sulfated form of the peptide was observed. The number of 80 Da losses indicated the number of sulfated sites. By continuing to ramp the CE further, it was possible to fragment the non-sulfated peptides and obtain detailed sequence information. It was not possible to obtain site-specific information on the location of the sulfate moieties using positive ion MS/MS as none of the original precursor ions were present at the time of peptide backbone fragmentation. This method was applied to the analysis of recombinant human B-domain deleted factor VIII (BDDrFVIII), which has six well-documented sulfation sites and several potential phosphorylation sites located in two of the sulfated regions of the protein. Seven peptides with single and multiple +80 Da modifications were isolated and analyzed for their respective PTMs. The fragmentation patterns obtained from the BDDrFVIII peptides were compared with those obtained for the standard peptides; and in all cases the peptides were sulfated. None of the potential phosphorylation sites were found to be occupied, and these results are consistent with the literature.  相似文献   

20.
Payne AH  Chelf JH  Glish GL 《The Analyst》2000,125(4):635-640
MS/MS has been used to sequence peptides and small proteins for a number of years. This method allows one to isolate the peptide of interest, which makes it possible to analyze impure samples and unseparated mixtures, such as protein digests. Collision-induced dissociation (CID) of the selected peptide ion generates the product ions that provide sequence information. However, often the MS/MS spectrum does not provide adequate information for complete sequence determination. The quadrupole ion trap has the capability to do multiple stages of mass spectrometry, MSn, which can increase the information available to determine the peptide sequence. A regular and predictable dissociation pattern for peptides further simplifies this analysis. By forming predominantly one type of ion, ambiguity is removed as to whether the ion is N- or C-terminal. This pattern can also be advantageous in that ion intensity remains concentrated for the next stage of MS/MS. In this work, a method to take advantage of the MSn capabilities of the quadrupole ion trap by controlling the dissociation pathways is explored. Dissociation is altered by acetylating the N-terminus of the peptide. MSn of a variety of acetylated peptides is used to determine the effects of the identity of the C-terminal residue and the length of the peptide on the dissociation pathways observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号