首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Trace metals play an important role in the regulation of primary productivity and phytoplankton community composition. Metal species directly affects the biogeochemical cycling processes, transport, fate, bioavailability and toxicity of trace metals. Therefore, developing powerful methods for metal speciation analysis is very useful for research in a range of fields, including chemical and environmental analysis. Voltammetric methods, such as anodic stripping voltammetry (ASV) and competing ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV), have been widely adopted for speciation analysis of metals in different natural aquatic systems. This paper provides an overview of the theory of voltammetric methods and their application for metal speciation analysis in natural waters, with a particular focus on current voltammetric methods for the discrimination of labile/inert fractions, redox species and covalently bound species. Speciation analysis of typical trace metals in natural waters including Fe, Cu, Zn, Cd, and Pb are presented and discussed in detail, with future perspectives for metal speciation analysis using voltammetric methods also discussed. This review can elaborate the particular knowledge of theory, merits, application and future challenge of voltammetric methods for speciation analysis of trace metals in natural waters.  相似文献   

2.
Trace element speciation has recently become one of the most important problems in water analysis. Proper combination of preconcentration techniques with instrumental determination methods is essential to speciation analysis, because sensitivity and selectivity of direct determination methods are generally lacking. The present paper describes such preconcentration techniques as filtration, centrifugation, flotation and sorption, which have been developed in the author's laboratory for the speciation of heavy metals in river and pond waters by electron microscopy, X-ray microanalysis and chemical analysis. The application of freeze concentration to the speciation of silica in high-purity waters is also discussed.  相似文献   

3.
The hexavalent Cr species Cr(VI) in natural waters can be quantitatively extracted by diethyldithiocarbamate (DDTC) in the pH range 4.0–4.5 into chloroform, followed by back-extraction into a Hg(II) solution for graphite furnace atomic absorption spectrometry (GFAAS). The trivalent Cr(III) species can be oxidized to Cr(VI) by KMnO4 and then extracted by the DDTC-Hg(II) procedure. The proposed two-step extraction method combined with GFAAS is suitable for Cr speciation studies in natural water systems.  相似文献   

4.
It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET-AAS, ICP-AES, or ICP-MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.  相似文献   

5.
Summary The different aspects of speciation analysis are reviewed. Species-specific instrumental techniques as well as various speciation schemes are considered for the determination of species of metals and metalloids, including organometallic compounds. The application of the methods are discussed in some detail for the analysis of natural waters, air, soil, sediment and biological samples. The relationship between metal species and bioavailability is also briefly dealt with.  相似文献   

6.
It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET–AAS, ICP– AES, or ICP–MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.  相似文献   

7.
Modulated polarographic and voltammetric techniques are of particular importance in natural water chemistry because of their sensitivity not only to very low concentrations of electroactive components but also to their chemical form. Direct polarographic techniques are most useful for the analysis of non-metallic components at low concentrations since metal levels are only rarely high enough for the analysis of untreated samples. Preconcentration by chemical or electrochemical techniques have both been employed. Potentially the most productive field of application of polarographic and voltammetric methods is in determining the chemical speciation of electroactive components in natural waters. Some clarification is required of the chemical and biological significance of operational classifications currently employed. Intermetallic interferences and the influence of surface films on electrode behaviour need to be more thoroughly investigated before analyses or speciation studies on untreated samples can be routinely undertaken. Chemical and electrochemical understanding rather than increased sophistication in the instrumentation is required at this stage if full advantage is to be taken of the capabilities of modulated polarographic and voltammetric methods in natural water chemistry.  相似文献   

8.
In natural waters trace elements, especially trace metals may be present in a variety of physicochemical forms. They may be associated with forms ranging from simple ions and molecules via hydrolysis products and colloids, pseudocolloids and organic or inorganic particles. The transition between categories is gradual. The presence of species differing in size, charge and density will influence on the transport, mobility and bioavailability of the trace element in question. Fractionation techniques which do not influence the distribution patterns are therefore required for speciation purposes. In the present work dialysis in situ and large membrane (hollow fibers) ultrafiltration are used for fractionation of low molecular weight species, colloids, pseudocolloids and particles. Due to the presence of foreign components transformation processes influence the distribution patterns of trace elements of interest. Sorption to foreign surfaces, complexation with agents present and aggregation of colloids (e.g., increasing ionic strength) result in a shift towards higher dimensions while desorption and dispersion processes mobilize the trace elements. Information on several components is therefore needed in speciation studies and a multielemental method of analysis having low determination limits must be applied. Instrumental neutron activation is appropriate to this kind of study because of its high sensitivity for simultaneous determination of a great-number of elements. Size fractionation techniques combined with INAA for the characterization of trace element species in natural waters will be discussed.  相似文献   

9.
Sampling and analytical techniques used for determining trace metal concentrations in atmospheric precipitation waters collected in Hungary are presented. The results of the analyses are briefly discussed and special attention is devoted to chromium speciation. For the preconcentration of the trace metals a chelating cellulose, iminodiacetic acid ethylcellulose (IDAEC) microcolumn was used in a flow-injected system. Cd, Co, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn were determined by ICP-AES. In precipitation water the concentrations of the trace elements were in the 0.1-50 mug/l. range. The two forms of chromium, Cr(III) and Cr(VI) were separated using IDAEC and the anion exchanger diethylamine ethylcellulose, respectively. Cr was determined by GFAAS. In atmospheric precipitation the concentration of Cr(III) was in the range of 0.1-0.4 mug/l. while that of Cr(VI) in the range of 0.04-0.1 mug/l.  相似文献   

10.
The use of inductively coupled plasma atomic emission spectrometry in combination with electrothermal atomic absorption spectrometry and autoclave sample preparation essentially improved performance characteristics of the determination of heavy metals and simplified analytical procedures for determining their speciation. Inductively coupled plasma atomic emission spectrometry can give information about the concentrations of a wide range of elements in water and bottom deposits at a level of MPC and, thus, is useful for revealing sources of pollution of water reservoirs. More sensitive electrothermal atomic absorption spectrometry was used for determining background concentrations of Pb, Cd, Co, Ni, Cu, Cr, Mo, and As and assessing the speciation of Pb, Cd, Co, Cu, and Zn in waters and bottom sediments. Based on the results of analyses of surface, bottom, and void waters; bottom sediments and their step-by-step extracts; and KMC and DEAE cellulose adsorbents containing charge-separated heavy metals, the ecological status of Kuibyshev, Ivan’kovo, and Rybinsk water reservoirs was assessed.  相似文献   

11.
An electrochemical mass spectrometry technique was developed based on a homemade analytical device for sequential analysis of the heavy metals with various speciations in the scales. Four speciations(e.g., water-soluble speciation, organic speciation, indissoluble speciation and elemental speciation) of heavy metals are sequentially extracted by H2O, CH3OH, EDTA-2Na and electrolysis for online electrospray ionization mass spectrometry(ESI-MS) detection. The method takes significant advantages, such as requiring no tedious offline sample pretreatment, high speed of analysis(20 min), high throughput (multi-metals), good sensitivity(0.5 μg/L) and rich chemical information(four speciations). As a result, the rapid comprehensive characterization of four speciations of Pb, Ni, Cu, Zn, Fe, Ba, Mn, Cr and Ca in water pipe scales has been qualitatively achieved. It demonstrated that the present method is a powerful tool for the effective assessment of potential hazards in drinking water, which provides a new analytical idea for evaluating water quality.  相似文献   

12.
Elemental speciation analysis in capillary electrophoresis   总被引:1,自引:0,他引:1  
Liu YM  Cheng JK 《Electrophoresis》2003,24(12-13):1993-2012
  相似文献   

13.
Knowledge of the oxidation state distribution of plutonium in natural waters is necessary in modeling its behavior in environmental systems. The redox speciation of plutonium is complicated by such effects as hydrolysis, complexation, disproportionation, solubility, and redox interchange reactions. The insolubility of Pu(OH)4 is often the limiting factor of the net solubility of plutonium in oxic natural waters where Pu(V)O 2 + is the most stable oxidation state. Perturbations to the oxidation state speciation due to the complexation chemistry of the different oxidation states of plutonium and to the insolubility of plutonium(IV) in neutral aquatic systems are discussed. The merits and limitations of some chemical separation techniques used to study redox speciation of plutonium are presented, and recommendations made for obtaining reliable oxidation state distribution data.  相似文献   

14.
An application of coupled column ion chromatography (IC)-inductively coupled plasma mass spectrometry (ICP-MS) is presented for speciation of chromium in waste waters. By coupling an anion column with a cation column, both the cationic Cr(III) and anionic Cr(VI) species can be analyzed with detection limits below 0.5 μg/1. The separation of the interfering ions (chloride, chlorate, perchlorate, sulphate, sulphite, sulphide, thiosulphate, carbonate, cyanide and some organic compounds) from the chromium peaks is discussed, and the use of different chromium isotopes for data acquisition is compared. Based on the results, m/z 52 was considered as an ideal isotope for speciation of chromium in waste waters by the coupled column IC-ICP-MS, because it did not suffer from polyatomic interferences and due to the high sensitivity for chromium. The analysis of the waste water samples should be performed as soon as possible after sampling according to the stability tests of the species.  相似文献   

15.
Abstract

This paper reports the distribution of a series of metals in natural samples collected at Carezza Lake in Antarctica, during the Italian Expedition in the austral summer 1989/90. The considered elements are: water, sediments and soil sampled from the surroundings of the lake and algae. The determination of the total concentration of the following metals was performed: Al, As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Zn. In addition, for sediment and soil samples, a speciation study was performed for some metals, namely Cd, Co, Cr, Cu, Fe, Mn, Ni, Zn, using the Tessier procedure.  相似文献   

16.
Advanced voltammetry, predominantly in the differential-pulse mode, has become one of the most significant and suitable methods for investigations of the level, fate and transfer of heavy metals with toxicological significance in the ecology of aquatic systems and atmospheric precipitations. In addition, voltammetry offers particular potentialities for studies of heavy metal speciation in natural waters. The salient aspects of the overall analytical procedure are discussed. The substantial possibilities for application are emphasized by a number of examples taken from recent work.  相似文献   

17.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

18.
Osaki S  Osaki T  Hirashima N  Takashima Y 《Talanta》1983,30(7):523-526
The chromium(VI) contents of two water samples, a river water and a sea-water, were determined by means of solvent extraction with APDC (ammonium pyrrolidinedithiocarbamate) into chloroform and by co-precipitation with iron(III) hydroxide. The analytical results depended on the separation method used, possibly because of differences in the behaviour of the chemical species of chromium in natural waters. Various chromium species, including simple inorganic ions, organic complexes, Cr(III) adsorbed on inorganic colloids and Cr(III) combined with organic polymers, were prepared, and their analytical characteristics were investigated.  相似文献   

19.
The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM2.5). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m3. The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2–4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.  相似文献   

20.
Aerobic and anaerobic incubation experiments on a wetland soil samples were used to assess the respective roles of organic matter (OM) release, Fe-oxyhydroxides reduction and redox/speciation changes on trace metal mobility during soil reduction. Significant amounts of Cu, Cr, Co, Ni, Pb, U, Th and Rare Earth Elements (REE) were released during anaerobic incubation, and were accompanied by strong Fe(II) and dissolved organic matter (DOM) release. Aerobic incubation at pH 7 also resulted in significant trace metal and DOM release, suggesting that Fe-oxyhydroxide reduction is not the sole mechanism controlling trace metal mobility during soil reduction. Using these results and redox/speciation modeling, four types of trace metal behavior were identified: (i) metals bound to organic matter (OM) and released by DOM release (REE); (ii) metals bound to both OM and Fe-oxyhydroxides, and released by the combined effect of DOM release and Fe(III) reduction (Pb and Ni); (iii) metals bound solely to soil Fe-oxyhydroxides and released by its reductive dissolution (Co); and (iv) metals for which release mechanisms are unclear because their behavior upon reduction is affected by changes in redox state and/or solution speciation (Cu, Cr, U and Th). Even though the process of soil Fe-oxyhydroxide reduction is important in controlling metal mobility in wetland soils, the present study showed that the dominant mechanism for this process is OM release. Thus, OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils. Due to the fact that the process of OM release is mainly controlled by pH variations, the pH is a more crucial parameter than Eh for metal mobility in wetland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号