首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 982 毫秒
1.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

2.
Let G be a graph on the vertex set V={x 1, ..., x n}. Let k be a field and let R be the polynomial ring k[x 1, ..., x n]. The graph ideal I(G), associated to G, is the ideal of R generated by the set of square-free monomials x ixj so that x i, is adjacent to x j. The graph G is Cohen-Macaulay over k if R/I(G) is a Cohen-Macaulay ring. Let G be a Cohen-Macaulay bipartite graph. The main result of this paper shows that G{v} is Cohen-Macaulay for some vertex v in G. Then as a consequence it is shown that the Reisner-Stanley simplicial complex of I(G) is shellable. An example of N. Terai is presented showing these results fail for Cohen-Macaulay non bipartite graphs. Partially supported by COFAA-IPN, CONACyT and SNI, México.  相似文献   

3.
A k-ranking of a graph G = (V, E) is a mapping ϕ: V → {1, 2, ..., k} such that each path with end vertices of the same colour c contains an internal vertex with colour greater than c. The ranking number of a graph G is the smallest positive integer k admitting a k-ranking of G. In the on-line version of the problem, the vertices v 1, v 2, ..., v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G[{v 1, v 2, ..., v i }] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest positive integer k such that there exists an algorithm that produces a k-ranking of G for an arbitrary input sequence of its vertices. We show that there are graphs with arbitrarily large difference and arbitrarily large ratio between the ranking number and the on-line ranking number. We also determine the on-line ranking number of complete n-partite graphs. The question of additivity and heredity is discussed as well.  相似文献   

4.
DNA labelled graphs with DNA computing   总被引:2,自引:0,他引:2  
Let k≥2, 1≤i≤k andα≥1 be three integers. For any multiset which consists of some k-long oligonucleotides, a DNA labelled graph is defined as follows: each oligonucleotide from the multiset becomes a point; two points are connected by an arc from the first point to the second one if the i rightmost uucleotides of the first point overlap with the i leftmost nucleotides of the second one. We say that a directed graph D can be(k, i;α)-labelled if it is possible to assign a label(l_1(x),..., l_k(x))to each point x of D such that l_j(x)∈{0,...,a-1}for any j∈{1,...,k}and(x,y)∈E(D)if and only if(l_k-i 1(x),..., l_k(x))=(l_1(y),..., l_i(y)). By the biological background, a directed graph is a DNA labelled graph if there exist two integers k, i such that it is(k, i; 4)-labelled. In this paper, a detailed discussion of DNA labelled graphs is given. Firstly, we study the relationship between DNA labelled graphs and some existing directed graph classes. Secondly, it is shown that for any DNA labelled graph, there exists a positive integer i such that it is(2i, i; 4)-labelled. Furthermore, the smallest i is determined, and a polynomial-time algorithm is introduced to give a(2i, i; 4)-labelling for a given DNA labelled graph. Finally, a DNA algorithm is given to find all paths from one given point to another in a(2i, i; 4)-labelled directed graph.  相似文献   

5.
Arc-disjoint in-trees in directed graphs   总被引:2,自引:0,他引:2  
Given a directed graph D = (V,A) with a set of d specified vertices S = {s 1,…, s d } ⊆ V and a function f: S → ℕ where ℕ denotes the set of natural numbers, we present a necessary and sufficient condition such that there exist Σ i=1 d f(s i ) arc-disjoint in-trees denoted by T i,1,T i,2,…, for every i = 1,…,d such that T i,1,…, are rooted at s i and each T i,j spans the vertices from which s i is reachable. This generalizes the result of Edmonds [2], i.e., the necessary and sufficient condition that for a directed graph D=(V,A) with a specified vertex sV, there are k arc-disjoint in-trees rooted at s each of which spans V. Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to the one in our case. Supported by JSPS Research Fellowships for Young Scientists. Supported by the project New Horizons in Computing, Grand-in-Aid for Scientific Research on Priority Areas, MEXT Japan.  相似文献   

6.
Ifμ is a positive measure, andA 2, ...,A n are measurable sets, the sequencesS 0, ...,S n andP [0], ...,P [n] are related by the inclusion-exclusion equalities. Inequalities among theS i are based on the obviousP [k]≧0. Letting =the average average measure of the intersection ofk of the setsA i , it is shown that (−1) k Δ k M i ≧0 fori+kn. The casek=1 yields Fréchet’s inequalities, andk=2 yields Gumbel’s and K. L. Chung’s inequalities. Generalizations are given involvingk-th order divided differences. Using convexity arguments, it is shown that forS 0=1, whenS 1N−1, and for 1≦k<Nn andv=0, 1, .... Asymptotic results asn → ∞ are obtained. In particular it is shown that for fixedN, for all sequencesM 0, ...,M n of sufficiently large length if and only if for 0<t<1.  相似文献   

7.
§1 IntroductionLet G be a graph with vertex-set V(G) ={ v1 ,v2 ,...,vn} .A labeling of G is a bijectionL:V(G)→{ 1,2 ,...,n} ,where L (vi) is the label of a vertex vi.A labeled graph is anordered pair (G,L) consisting of a graph G and its labeling L.Definition1.An increasing nonconsecutive path in a labeled graph(G,L) is a path(u1 ,u2 ,...,uk) in G such thatL(ui) + 1相似文献   

8.
A defensive k-alliance in a graph is a set S of vertices with the property that every vertex in S has at least k more neighbors in S than it has outside of S. A defensive k-alliance S is called global if it forms a dominating set. In this paper we study the problem of partitioning the vertex set of a graph into (global) defensive k-alliances. The (global) defensive k-alliance partition number of a graph Θ = (V, E), (ψ k gd (Γ)) ψ k d (Γ), is defined to be the maximum number of sets in a partition of V such that each set is a (global) defensive k-alliance. We obtain tight bounds on ψ k d (Θ) and ψ k gd (Γ) in terms of several parameters of the graph including the order, size, maximum and minimum degree, the algebraic connectivity and the isoperimetric number. Moreover, we study the close relationships that exist among partitions of Γ1 × Γ2 into (global) defensive (k 1 + k 2)-alliances and partitions of Γ i into (global) defensive k i -alliances, i ∈ {1, 2}.  相似文献   

9.
For any >0, we present an algorithm which takes as input a semi-algebraic set, S, defined by P 1≤0,…,P s ≤0, where each P i R[X 1,…,X k ] has degree≤2, and computes the top Betti numbers of S, b k−1(S),…,b k (S), in polynomial time. The complexity of the algorithm, stated more precisely, is . For fixed , the complexity of the algorithm can be expressed as , which is polynomial in the input parameters s and k. To our knowledge this is the first polynomial time algorithm for computing nontrivial topological invariants of semialgebraic sets in R k defined by polynomial inequalities, where the number of inequalities is not fixed and the polynomials are allowed to have degree greater than one. For fixed s, we obtain, by letting =k, an algorithm for computing all the Betti numbers of S whose complexity is . An erratum to this article can be found at  相似文献   

10.
PARTITION A GRAPH WITH SMALL DIAMETER INTO TWO INDUCED MATCHINGS   总被引:5,自引:0,他引:5  
§1 IntroductionGraphs considered in this paper are finite and simple.For a graph G,its vertex setandedge set are denoted by V(G) and E(G) ,respectively.If vertices u and v are connected inG,the distance between u and v,denoted by d G(u,v) ,is the length ofa shortest(u,v) -pathin G.The diameter of a connected graph G is the maximum distance between two verticesof G.For X V(G) ,the neighbor set NG(X) of X is defined byNG(X) ={ y∈V(G) \X:there is x∈X such thatxy∈E(G) } .NG({ x} )…  相似文献   

11.
A graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths and of G from u to v are independent if u = u 1 = v 1, v = u v(G) = v v(G) , and u i ≠ v i for every 1 < iv(G). A set of hamiltonian paths, {P 1, P 2, . . . , P k }, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP(G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with nk ≥ 2. We use S n,k to denote the (n, k)-star graph. In this paper, we prove that IHP(S n,k ) = n–2 except for S 4,2 such that IHP(S 4,2) = 1.   相似文献   

12.
Say that a sequenceS 0, ..., Sn has a (global) point of increase atk ifS k is maximal amongS 0, ..., Sk and minimal amongS k, ..., Sn. We give an elementary proof that ann-step symmetric random walk on the line has a (global) point of increase with probability comparable to 1/logn. (No moment assumptions are needed.) This implies the classical fact, due to Dvoretzky, Erdős and Kakutani (1961), that Brownian motion has no points of increase. Research partially supported by NSF grant # DMS-9404391.  相似文献   

13.
De Bruijn and Erdős proved that ifA 1, ...,A k are distinct subsets of a set of cardinalityn, and |A i A j |≦1 for 1≦i<jk, andk>n, then some two ofA 1, ...,A k have empty intersection. We prove a strengthening, that at leastk /n ofA 1, ...,A k are pairwise disjoint. This is motivated by a well-known conjecture of Erdőds, Faber and Lovász of which it is a corollary. Partially supported by N. S. F. grant No. MCS—8103440  相似文献   

14.
LetG=(V, E) be a graph andTV be a node set. We call an edge setS a Steiner tree forT ifS connects all pairs of nodes inT. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graphG=(V, E) with edge weightsw e , edge capacitiesc e ,eE, and node setT 1,…,T N , find edge setsS 1,…,S N such that eachS k is a Steiner tree forT k , at mostc e of these edge sets use edgee for eacheE, and the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from a routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing problem from a polyhedral point of view and define an associated polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described in our companion paper (in this issue).  相似文献   

15.
In this paper we consider the problem of bounding the Betti numbers, b i (S), of a semi-algebraic set S⊂ℝ k defined by polynomial inequalities P 1≥0,…,P s ≥0, where P i ∈ℝ[X 1,…,X k ], s<k, and deg (P i )≤2, for 1≤is. We prove that for 0≤ik−1,
This improves the bound of k O(s) proved by Barvinok (in Math. Z. 225:231–244, 1997). This improvement is made possible by a new approach, whereby we first bound the Betti numbers of non-singular complete intersections of complex projective varieties defined by generic quadratic forms, and use this bound to obtain bounds in the real semi-algebraic case. The first author was supported in part by an NSF grant CCF-0634907. The second author was partially supported by NSF grant CCF-0634907 and the European RTNetwork Real Algebraic and Analytic Geometry, Contract No. HPRN-CT-2001-00271.  相似文献   

16.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

17.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

18.
Let S⊂ℝ k+m be a compact semi-algebraic set defined by P 1≥0,…,P ≥0, where P i ∈ℝ[X 1,…,X k ,Y 1,…,Y m ], and deg (P i )≤2, 1≤i. Let π denote the standard projection from ℝ k+m onto ℝ m . We prove that for any q>0, the sum of the first q Betti numbers of π(S) is bounded by (k+m) O(q ). We also present an algorithm for computing the first q Betti numbers of π(S), whose complexity is . For fixed q and , both the bounds are polynomial in k+m. The author was supported in part by an NSF Career Award 0133597 and a Sloan Foundation Fellowship.  相似文献   

19.
Fusion frames have become a major tool in the implementation of distributed systems. The effectiveness of fusion frame applications in distributed systems is reflected in the efficiency of the end fusion process. This in turn is reflected in the efficiency of the inversion of the fusion frame operator SWS_{\mathcal{W}}, which in turn is heavily dependent on the sparsity of SWS_{\mathcal{W}}. We will show that sparsity of the fusion frame operator naturally exists by introducing a notion of non-orthogonal fusion frames. We show that for a fusion frame {W i ,v i } iI , if dim(W i )=k i , then the matrix of the non-orthogonal fusion frame operator SW{\mathcal{S}}_{{\mathcal{W}}} has in its corresponding location at most a k i ×k i block matrix. We provide necessary and sufficient conditions for which the new fusion frame operator SW{\mathcal{S}}_{{\mathcal{W}}} is diagonal and/or a multiple of an identity. A set of other critical questions are also addressed. A scheme of multiple fusion frames whose corresponding fusion frame operator becomes an diagonal operator is also examined.  相似文献   

20.
In this paper we consider the problem of determining whether an unknown arithmetic circuit, for which we have oracle access, computes the identically zero polynomial. This problem is known as the black-box polynomial identity testing (PIT) problem. Our focus is on polynomials that can be written in the form f([`(x)]) = ?i = 1k hi ([`(x)]) ·gi ([`(x)])f(\bar x) = \sum\nolimits_{i = 1}^k {h_i (\bar x) \cdot g_i (\bar x)} , where each h i is a polynomial that depends on only ρ linear functions, and each g i is a product of linear functions (when h i = 1, for each i, then we get the class of depth-3 circuits with k multiplication gates, also known as ΣΠΣ(k) circuits, but the general case is much richer). When max i (deg(h i · g i )) = d we say that f is computable by a ΣΠΣ(k; d;ρ) circuit. We obtain the following results.
1.  A deterministic black-box identity testing algorithm for ΣΠΣ(k; d;ρ) circuits that runs in quasi-polynomial time (for ρ=polylog(n+d)). In particular this gives the first black-box quasi-polynomial time PIT algorithm for depth-3 circuits with k multiplication gates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号