首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In this paper, a direct numerical simulation of a fully developed turbulent flow and heat transfer are studied in a square duct with an imposed temperature difference between the vertical walls and the perfectly insulated horizontal walls. The natural convection is considered on the cross section in the duct. The numerical scheme employs a time-splitting method to integrate the three dimensional incompressible Navier-Stokes equation. The unsteady flow field was simulated at a Reynolds number of 400 based on the Mean friction velocity and the hydraulic diameter (Re m = 6200), while the Prandtl number (Pr) is assumed 0.71. Four different Grashof numbers (Gr = 104, 105, 106 and 107) are considered. The results show that the secondary flow and turbulent characteristics are not affected obviously at lower Grashof number (Gr ≤ 105) cases, while for the higher Grashof number cases, natural convection has an important effect, but the mean flow and mean temperature at the cross section are also affected strongly by Reynolds stresses. Compared with the laminar heat transfer at the same Grashof number, the intensity of the combined heat transfer is somewhat decreased.  相似文献   

2.
 The problem of heat convection from a vertically oscillating cylinder in a quiescent fluid is investigated. The governing equations of motion and energy are solved numerically in a non-inertial frame of references to determine the flow field and heat transfer characteristics under different conditions. The main dominating parameters are Keulegan–Carpenter number, KC, frequency parameter, β, Grashof number, Gr and Prandtl number, Pr. The ranges considered for these parameters are KC ≤ 10, β≤40 and Gr ≤ 105 while Prandtl number is kept constant. The study revealed that the effect of amplitude and frequency of oscillation on heat transfer is strongly influenced by the Grashof number range. In the forced convection regime (Gr = 0), the increase of KC creates extensive vortex motion at all cylinder positions that leads to a significant increase in heat transfer. A similar trend, but with a lesser extent, is also observed for the increase of β. However, at high Grashof numbers, the effect of oscillation on heat convection is only significant at large values of KC. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

3.
Mixed convection heat transfer from an array of discrete heat sources inside a rectangular channel has been investigated experimentally under various operating conditions for air. The lower surface of the channel was equipped with 8 × 4 flush-mounted heat sources subjected to uniform heat flux, sidewalls and the upper wall are insulated and adiabatic. The experimental parametric study was made for an aspect ratio of AR = 10, Reynolds numbers 241 ReDh 980, and modified Grashof numbers Gr* = 9.53 × 105 to 1.53 × 107 . From the experimental measurements, surface temperature distributions of the discrete heat sources were obtained and effects of Reynolds and Grashof numbers on these temperatures were investigated. Furthermore, Nusselt number distributions were calculated for different Reynolds and Grashof numbers, with emphasis on changes obtained for different discrete heat source locations. From these results, the buoyancy affected secondary flow and the onset of instability have been discussed. Results show that surface temperatures increase with increasing Grashof number and decrease with increasing Reynolds number. However, with the increase in the buoyancy affected secondary flow and the onset of instability, temperatures level off and even drop as a result of heat transfer enhancement. This outcome can also be observed from the variation of the row-averaged Nusselt number showing an increase towards the exit, especially for low Reynolds numbers.  相似文献   

4.
The characteristics of unsteady entrance heat transfer in the combined entrance heat transfer region of laminar pipe flows resulting from time-varying inlet temperature are numerically investigated. Three non-dimensional parameters,Nu 0, a*, andf are identified in the study. Also, their effects on the non-dimensional duct wall temperature, fluid bulk temperature, and duct wall heat flux are discussed in great detail. Comparisons are made with the zero thermal capacity wall solution.  相似文献   

5.
We present a spectral‐element discontinuous Galerkin thermal lattice Boltzmann method for fluid–solid conjugate heat transfer applications. Using the discrete Boltzmann equation, we propose a numerical scheme for conjugate heat transfer applications on unstructured, non‐uniform grids. We employ a double‐distribution thermal lattice Boltzmann model to resolve flows with variable Prandtl (Pr) number. Based upon its finite element heritage, the spectral‐element discontinuous Galerkin discretization provides an effective means to model and investigate thermal transport in applications with complex geometries. Our solutions are represented by the tensor product basis of the one‐dimensional Legendre–Lagrange interpolation polynomials. A high‐order discretization is employed on body‐conforming hexahedral elements with Gauss–Lobatto–Legendre quadrature nodes. Thermal and hydrodynamic bounce‐back boundary conditions are imposed via the numerical flux formulation that arises because of the discontinuous Galerkin approach. As a result, our scheme does not require tedious extrapolation at the boundaries, which may cause loss of mass conservation. We compare solutions of the proposed scheme with an analytical solution for a solid–solid conjugate heat transfer problem in a 2D annulus and illustrate the capture of temperature continuities across interfaces for conductivity ratio γ > 1. We also investigate the effect of Reynolds (Re) and Grashof (Gr) number on the conjugate heat transfer between a heat‐generating solid and a surrounding fluid. Steady‐state results are presented for Re = 5?40 and Gr = 105?106. In each case, we discuss the effect of Re and Gr on the heat flux (i.e. Nusselt number Nu) at the fluid–solid interface. Our results are validated against previous studies that employ finite‐difference and continuous spectral‐element methods to solve the Navier–Stokes equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A 3D Numerical study of mixed convection air flow in upward solar air heater with large spanwise aspect ratio (A = 10 to 40) was performed using CFD commercial code Fluent 14.5 (ANSYS). The main objective of this study is to investigate the channel height's effect (aspect ratio) on flow pattern and heat transfer in upward solar air heater in the particular case of low Re and high aspect ratio. The bottom plate (absorber) was submitted to Constant Heat Flux (CHF) in the range of 200 to 1000 W/m2 and Reynolds number was varied from 50 to 1000. Our results are in concordance with most of authors conclusions about Poiseuille–Rayleigh–Benard flows. In mixed convection, increasing heat flux enhances heat transfer unlike forced convection flows. Simulation results of flow visualizations and Nusselt number calculations have shown that depending on Ri*, the velocity and temperature distributions in SAH vary greatly with the channel's height. The obtained results were different from previous studies. Indeed, our investigation of channel's height was achieved for the same heat flux but different Grashof numbers. For low channel's heights (high aspect ratio), increasing heat flux has not a significant effect but for higher channel's heights, an augmentation of heat flux enhances buoyancy effects in the flow and causes high turbulence. Also, increasing Reynolds number in low channel's heights (high A), can enhance substantially heat transfer. For higher channel's heights (low A), increasing Reynolds number decreases Ri* and thus buoyancy forces. Heat transfer is reduced and so Nusselt number. The obtained results may be very useful for engineers in designing and testing solar collectors.  相似文献   

7.
The results of a numerical study of the effect of cold-water density inversion (Prandtl number Pr=11.59) on the flow and heat transfer in a horizontal plane-parallel channel with isothermal top and bottom walls are presented. The calculations were performed for the Grashof number Gr=3·104, the Reynolds number Re=10, and the channel segment length-to-height ratiol/d=40. The wall temperature was so varied that the temperature difference between the top and bottom walls remained constant. Surgut. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 72–78, January–February, 2000.  相似文献   

8.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

9.
The mixed convection in a vertical plane-parallel channel with two heat sources of finite dimensions located at the wall is analyzed on the basis of a two-dimensional numerical simulation. The effect of the distance between the heat sources on the flow pattern and the temperature field is studied. Calculations are performed on the Grashof and Reynolds number ranges from 0–105 and 0–10, respectively, at a Prandtl number of 0.7. The mathematical model is based on the time-dependent Navier-Stokes equations in the Boussinesq approximation. The problem is solved by the finite element method.  相似文献   

10.
A study is made of two-dimensional problems of thermal convection of a viscous incompressible gas in rectangular regions that have gas inlet and outlet channels in the presence of a temperature difference between the bottom and the top (the bottom is heated). In contrast to the well-studied case of natural convection, when no-slip conditions are specified on all boundaries of the region and motion in the region occurs only through the temperature difference [1–4], the heat transfer in the investigated flows is complicated by the additional influence of the forced convection of the gas due to the motion of gas through the inlet and outlet channels. Flows of such type simulate well the processes that take place in many heat transfer devices and in ventilated and air-conditioned industrial premises. Two formulations of the problem are considered. In the first, the gas flow through the inlet and outlet channels is assumed given, and the solution of the problem is determined by the dimensionless Prandtl, Grashof, and Reynolds numbers. In the second case, this flow rate is not given but determined during the solution of the problem. The motion in the region arises from the difference between the temperatures of the bottom and the top of the region, and the motion, in its turn, causes a flow of gas through the inlet and outlet channels. As in the case of natural convection, the solution of the problem in this case is determined by only two dimensionless numbers — the Grashof and Prandtl numbers. By numerical solution of the boundary-value problems for the equations of heat transfer a study is made of the influence of the characteristic dimensionless numbers on the hydrodynamic and temperature fields and the heat fluxes through the boundaries of the region. The solutions of the problems in the two formulations are compared for different positions of the outlet channels.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 126–131, September–October, 1979.We thank G. I. Petrov for discussing the results.  相似文献   

11.
浮力对混合对流流动及换热特性的影响   总被引:1,自引:0,他引:1  
用热线和冷线相结合的技术测量垂直圆管内逆混合对流流体的平均速度、 温度以及它们的脉动. 较详细地研究了浮力对逆混合对流的流动特性和传热特性的影响. 评 估了实验中采用的冷线测量温度补偿速度探头温度敏感的影响. 逆混合对流的传热结果用无 量纲参数Ω (Ω= Grd / Red2 )来表示,其中,基于管道直 径的雷诺数Red变化范围为900~18000, 浮力参数Ω变化范围为 0.004899~0.5047. 研究结果表明,浮力对逆混合对流的换热有强化作用. 随着葛拉晓夫数Grd的增加,温度脉动,流向雷诺正应力和流向温度通量增 大,并且在靠近壁面的流体区域尤其明显. 热线与冷线相结合的技术适合于研究非绝热的流 动测量,可以用于研究浮力对流动和换热特性的影响.  相似文献   

12.
An analysis is performed to study the flow and heat transfer characteristics of laminar mixed convection boundary layer flows from inclined (including horizontal and vertical) surfaces embedded in a saturated porous medium with constant aiding external flows and uniform surface temperature. Both the streamwise and normal components of the buoyancy forces are retained in the momentum equations. Nondimensionalization of the boundary layer equations results in the following three governing parameter: (1)Gr/Re, the ratio of the Grashof number to the Reynolds number; (2)Pe x =Re x Pr, the Peclet number; (3) φ, the angle of inclination from the horizontal. The resulting nonsimilar equations are solved by an efficient implicit finite-difference scheme. Numerical results are presented for flows with different values ofGr/Re in the range of 0 to 50, over a wide range of the Peclet numbersPe x, and various values of φ ranging from 0 to 90 degrees. It is found that the local surface heat transfer rate increases with increasing the local Peclet number. In addition, as the plate is tilted from the horizontal to the vertical orientation, the local Nusselt number increases for a given Peclet number and the effect of the buoyancy force on the surface heat transfer rate increases.  相似文献   

13.
The problem of three dimensional unsteady convection flow through a porous medium, with effect of mass transfer bounded by an infinite vertical porous plate is discussed, when the suction at the plate is transverse sinusoidal and the plate temperature oscillates in time about a constant mean. Assuming the free stream velocity to be uniform, approximate solutions are obtained for the flow field, the temperature field, the skin-friction and the rate of heat transfer. The dependence of solution on Pr (Prandtl number), Gr (Grashof number based on temperature), Gc (modified Grashof number based on concentration difference), Sc (Schimdt number), the frequency and the permeability parameter is also investigated.  相似文献   

14.
Heat transfer effects of variable viscosity and viscous dissipation for heated developing laminar flows in circular tubes have been investigated. Three studies are reported covering a comprehensive range of input data for the case of constant wall heat flux. Initially the program was used to predict the effect on heat transfer of temperature-dependent viscosity via a general temperature power relation. In addition, predictions were made for nine particular fluids covering a range of Prandtl numbers from 0.025 to 12 500, and a range of Brinkman numbers from 1.8 × 10?10 to 6.8 × 103. A more detailed study was made for two particular oils covering a range of practical interest. For the liquids considered their viscosity temperature-dependence resulted in enhancement of heat transfer, whereas for fluids with a Prandtl number <200 the effect of viscous dissipation was negligible, and for fluids of a Brinkman number > × 10?2 the outcome was a reduction of heat transfer. A numerical instability problem occurred for situations of very high viscous dissipation which limited the length of duct that could be examined.  相似文献   

15.
The problem of non-Darcy natural convection adjacent to a vertical cylinder embedded in a thermally stratified porous medium has been analyzed. Nonsimilarity solutions are obtained for the case that the ambient temperature increases linearly with height of the cylinder. A generalized flow model was used in the present study to include the effects of the macroscopic viscous term and the microscopic inertial force. Also, the thermal dispersion effect is considered in the energy equation. Thus, the main aim of this work is to examine the effects of thermal stratification and non-Darcy flow phenomena on the free convection flow and heat transfer characteristics. It was found that the present problem depends on six parameters, namely, the local thermal stratification parameter ξ, the boundary effect parameter Bp, the modified Grashof number Gr*, wall temperature exponent m, the curvature parameter ω, and the modified Rayleigh number based on pore diameter Ra d . The impacts of these governing parameters on the local heat transfer parameter are discussed in great detail. Also, representative velocity and temperature profiles are presented at selected values of the thermal stratification parameter. In general, the local heat transfer parameter is increased with increasing the values of m, ω, and Ra d ; while it is decreased with increasing the values of ξ, Bp, and Gr*. Received on 19 May 1998  相似文献   

16.
In planning for the underground storing of liquid hydrocarbons and calculating the technological parameters of underground reservoirs formed by leeching from a rock salt massif, it is necessary to understand the hydrodynamic and heat transfer processes produced by natural convection. The paper is devoted to numerical study of the initial stage of convective heat transfer in a vertical cylindrical cavity completely filled with a liquid hydrocarbon. It is assumed that at the initial time the temperature of the liquid, which is at rest, is homogeneous, Convective flow develops in part due to the initial temperature difference between the liquid and the massif and partly due to the geothermal temperature gradient in the latter. The problem is regarded as coupled, the convective process in the liquid being determined simultaneously with the solution of the heat-conduction problem in the surrounding rock. The Grashof numbers characterizing the intensity of the real process are very large: G lO12–lO15. A numerical solution was obtained for moderate Grashof numbers G lO7–lO11. The asymptotic dependences for the integral characteristics of the unsteady process obtained in a series of calculations were extrapolated to the real values of the Grashof number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 143–148, March–April, 1981.  相似文献   

17.
The mixed convection flow of a hybrid nanofluid in an inclined channel with top wall-slip due to wall stripe and constant heat flux conditions is studied. Explicit analytical solutions are given to the flow velocity, temperature, as well as the pressure in non-dimensional forms. The flow regime domain, the velocity and temperature distributions, and the dependence of various physical parameters such as the hybrid nanoparticle volume fractions, the wall-slip, the Grashof number, the Reynolds numb...  相似文献   

18.
Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink). The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to −90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Double diffusive convection of anomalous density fluids in a porous cavity   总被引:1,自引:0,他引:1  
A numerical study has been performed to analyze the combined effect of temperature and species gradients on the buoyancy-driven natural convection flow of cold water near its density extremum contained in a porous cavity. The governing equations are descretized using the finite volume method. The results of the investigation are presented in the form of steady-state streamlines, velocity vectors, isotherms, and isoconcentrationlines. The results are discussed for different porosities, Darcy numbers, and Grashof numbers. The heat and mass transfer rates calculated are found to behave nonlinearly with hot wall temperature. The heat and mass transfer are increased with increasing Darcy number and porosity. It is found that the convective heat and mass transfer rate are greatly affected by the presence of density maximum.  相似文献   

20.
Summary The effect of surface mass flux on the non-Darcy natural convection over a horizontal flat plate in a saturated porous medium is studied using similarity solution technique. Forchheimer extension is considered in the flow equations. The suction/injection velocity distribution has been assumed to have power function form Bx l , similar to that of the wall temperature distribution Ax n , where x is the distance from the leading edge. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The dynamic diffusivity is assumed to vary linearly with the velocity component in the x direction, i.e. along the hot wall. For the problem of constant heat flux from the surface (n=1/2), similarity solution is possible when the exponent l takes the value −1/2. Results indicate that the boundary layer thickness decreases whereas the heat transfer rate increases as the mass flux parameter passes from the injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to favor the heat transfer by reducing the boundary layer thickness. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed. Received 7 December 1995; accepted for publication 7 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号