首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step.  相似文献   

2.
The reaction of polyepichlorohydrin with magnesium in tetrahydrofuran at reflux temperature was studied in the hope of obtaining a polymeric Grignard reagent. The polymeric Grignard reagent could not be obtained, but dechlorination occurred. It was confirmed that the Grignard reagent of polyepichlorohydrin was formed as an intermediate during the dechlorination. The reactions of polyepichlorohydrin with Grignard reagents were carried out in tetrahydrofuran at reflux temperature. Benzylmagnesium chloride and allylmagnesium chloride were used as Grignard reagents. It was found that the chlorine atom in polyepichlorohydrin can be replaced by benzyl and allyl groups. The extent of the substitution increased with increasing concentration of Grignard reagent. Dechlorination and scission of the ether linkage occurred simultaneously as side reactions.  相似文献   

3.
Grignard reactions with alkoxysilanes or carbonyl compounds produce alkoxymagnesium halides as by-products. Kinetic measurements for reactions of silanes and of a ketone were performed with Grignard reagents, enriched in alkoxymagnesium halides and taken in a great excess.The alkoxide-type reaction products complex tightly with Grignard reagents and enhance in this way their nucleophilicity, thus accelerating the reaction. However, alkoxides branched at α-C atom exert an unfavorable steric hindrance to reaction resulting in a decrease in the reaction rate.  相似文献   

4.
n-Octyl fluoride underwent a cross-coupling reaction with n-propylmagnesium bromide in the presence of 1,3-butadiene using NiCl2 as a catalyst at room temperature to give undecane in moderate yields. This alkyl-alkyl cross-coupling proceeded more efficiently when CuCl2 was employed instead of NiCl2. Addition of 1,3-butadiene dramatically improved the yields of the coupling products from primary alkyl Grignard reagents in both Ni- and Cu-catalyzed reactions. Alkyl fluorides efficiently reacted with tertiary alkyl and phenyl Grignard reagents using CuCl2 in the absence of 1,3-butadiene to afford the coupling products in high yields. The competitive reaction of a mixture of alkyl halides (R-X; X = F, Cl, Br) with nC5H11MgBr showed that the reactivities of the halides increase in the order R-Cl < R-F < R-Br. In contrast, in the Cu-catalyzed reaction with PhMgBr, the reactivities increase in the order R-Cl < R-Br < R-F.  相似文献   

5.
Reaction of poly(vinyl chloride) with magnesium under various conditions was attempted, but poly(vinyl chloride) did not react with magnesium. The reactions of poly(vinyl chloride) with benzylmagnesium chloride and allylmagnesium chloride as Grignard reagents were carried out in tetrahydrofuran at reflux temperature. It was found that the chlorine atoms in the poly(vinyl chloride) were replaced by benzyl and allyl groups by the coupling reaction, and a small amount of Grignard reagent of poly(vinyl chloride) was formed by the magnesium–halogen exchange reaction. The extent of the substitution increased with increasing reaction time and concentration of the Grignard reagent.  相似文献   

6.
The mechanism of the enantioselective 1,4-addition of Grignard reagents to alpha,beta-unsaturated carbonyl compounds promoted by copper complexes of chiral ferrocenyl diphosphines is explored through kinetic, spectroscopic, and electrochemical analysis. On the basis of these studies, a structure of the active catalyst is proposed. The roles of the solvent, copper halide, and the Grignard reagent have been examined. Kinetic studies support a reductive elimination as the rate-limiting step in which the chiral catalyst, the substrate, and the Grignard reagent are involved. The thermodynamic activation parameters were determined from the temperature dependence of the reaction rate. The putative active species and the catalytic cycle of the reaction are discussed.  相似文献   

7.
Substitution of the chloro group in 2-(2-chlorophenyl)-4,4-dimethyl-2-oxazoline to afford biaryls occurs upon reaction with either aryllithium reagents or aryl Grignard reagents. The reactions with Grignard reagents occur under similar conditions to a previously reported manganese-catalysed procedure. The reactions with lithium reagents, whilst not always affording greater yields of product than the Grignard reagents, involve much shorter reaction times and afford yields, which are comparable with those obtained from the corresponding fluoro derivative.  相似文献   

8.
ZnBr2 was found to catalyze formation of propargyl and propargylic Grignard reagents, and thus put an end to the standard method using a mercury catalyst. The Grignard reagents were submitted to addition reaction with carbonyl compounds and allylation with the cyclic monoacetate to afford the propargyl-type products selectively. Furthermore, the product from the monoacetate was transformed to an acetylene analogue of 2-(5,6-epoxyisoprostane A2)phosphorylcholines.  相似文献   

9.
Ottesen LK  Ek F  Olsson R 《Organic letters》2006,8(9):1771-1773
[reaction: see text] A general, high yielding rapid iron-catalyzed cross-coupling reaction between Grignard reagents and imidoyl chlorides is described. These reactions are typically completed within 5 min, resulting in high yields of 71-96% using 5% iron catalyst in a THF-NMP solvent mixture. Functionalized imidoyl chlorides (e.g., R = CO(2)Me) gave excellent yields (89%).  相似文献   

10.
Direct application of benzyl alcohols (or their magnesium salts) as electrophiles in various reactions with Grignard reagents has been developed via transition metal-catalyzed sp(3) C-O bond activation. Ni complex was found to be an efficient catalyst for the first direct cross coupling of benzyl alcohols with aryl/alkyl Grignard reagents, while Fe, Co, or Ni catalysts could promote the unprecedented conversion of benzyl alcohols to benzyl Grignard reagents in the presence of (n)hexylMgCl. These methods offer straightforward pathways to transform benzyl alcohols into a variety of functionalities.  相似文献   

11.
Y. Ohbe  T. Matsuda 《Tetrahedron》1973,29(19):2989-2995
The reaction of allylic halide with Grignard reagent in the presence of transition metal chloride has been investigated. Three reactions of allylic halide occurred competitively; (i) reduction to olefin, (ii) coupling with Grignard reagent to olefin (cross-coupling) and (iii) coupling with itself to 1,5-diene (homo-coupling). The relative importance of these reactions depends on both the structures of allylic halide and Grignard reagent, as well as on the transition metal salt utilized. The mechanism was discussed in terms of the allylic transition metal intermediate.  相似文献   

12.
This tutorial review is intended to provide the reader with a timely review of major developments and the current state-of-the-art of palladium-catalyzed cross-coupling reactions with Grignard reagents. Organomagnesium reagents, the most reactive and most easily accessible nucleophiles for carbon-carbon bond forming cross-coupling reactions, were the first nucleophiles ever employed in cross-coupling reactions, but have only recently been re-discovered for highly efficient and (stereo)selective coupling reactions. This is mostly a consequence of improved catalyst systems with bulky phosphine, phosphonate or carbene ligands and new metal-halogen exchange procedures for the generation of functionalized Grignard reagents.  相似文献   

13.
Conditions for low-temperature Kumada-Corriu cross-coupling of polychlorinated acenes with Grignard reagents are reported. Our work was motivated by a search for cross-coupling reactions effective in the synthesis of functionalized linear acenes for organic materials applications. Treatment of polychlorinated acenes with the PEPPSI-IPr catalyst and MeMgBr undergo 6-8 concurrent coupling reactions to yield products such as octamethylnaphthalene, which is distorted out of planarity due to the steric interaction between the methyl groups. More sterically demanding Grignard reagents such as PhMgBr coupled cleanly with 9,10-dichloroanthracene to provide products such as 9,10-diphenylanthracene, a blue OLED component, in excellent yield.  相似文献   

14.
In the presence of metallic magnesium, the homocoupling reaction of aryl bromides catalyzed by iron triflate was carried out readily in one pot. The catalyst was used successfully in this coupling reaction without preparation of Grignard reagent in advance. Meanwhile, the catalyst was recovered easily and reused smoothly with only a little loss of its activity.  相似文献   

15.
Formation reactions of phenylmagnesium chloride and bromide in toluene in the presence of one or two equivalents of diethyl ether or THF were investigated kinetically. Also, the reaction in diethyl ether and in chlorobenzene was addressed. Kinetic features of the reactions are similar to those found previously for the formation of alkylmagnesium halides in toluene and consist of rapid formation of a disolvated Grignard reagent followed by a slower formation of a monosolvated reagent. The latter is able of catalyzing the conversion of different halides into Grignard reagents. However, the contribution of Wurtz-type side reactions is considerable except when THF is used in toluene. Involving the kinetic data and the activation parameters some details of the reaction mechanism were discussed.  相似文献   

16.
Poly(3‐octadecylthiophene)s (P3OTs) were prepared via Grignard metathesis polymerization of 2,5‐dibromo‐3‐octadecylthiophene in the presence of palladium and nickel catalysts. The effect of catalyst structure and reaction temperature on the regioregularity of P3OTs was investigated. Nickel catalysts provided P3OTs with higher regioregularity, while palladium catalysts gave lower regioregularity. Surprisingly, the regioregularity of P3OTs increased when the polymerization was conducted at higher temperature. The catalyst and temperature dependence of the regioregularity is consistent with two competing mechanisms. Polymerizations at higher temperature with nickel catalysts occur primarily via chain‐growth reactions, while polymerizations at lower temperature with palladium catalysts have competing step‐growth and chain growth reactions. P3OTs with higher regioregularity have longer wavelength visible absorptions, while P3OTs with lower regioregularity have shorter wavelength absorptions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5538–5547, 2004  相似文献   

17.
A palladium bipyridyl complex anchored onto nanosized mesoporous silica MCM-41 catalyzed the cross-coupling of aryl iodides or bromides with Grignard reagents to provide the corresponding biaryls in high yields. The reaction proceeded smoothly with an equal molar amount of substrate and Grignard reagent in the presence of 0.2-0.02 mol % of catalyst in THF at 50 °C or under refluxing conditions. The catalyst prepared may be used in a very low percentage, recovered after reaction, and re-used.  相似文献   

18.
《Tetrahedron letters》1988,29(35):4445-4448
The reaction of p-benzenesulfonylphenyl crotyl sulfoxide with Grignard reagents is considered to proceed via formation of an incipient σ-sulfurane to afford the coupling product, p-benzenesulfonyl-crotylbenzene, in which the geometric configuration of crotyl group was completely preserved. No rearrangement was observed in the coupling reaction of p-benzenesulfonylphenyl α-methylallyl sulfoxide. Such a complete retention of geometric configuration was also found in the reactions of 2-pyridyl and p-benzenesulfonylphenyl styryl sulfoxides with Grignard reagents.  相似文献   

19.
The Friedel-Crafts reactions of optically active phenyloxirane with toluene and anisole were examined for stereospecificity. The enantiomeric ratios of the diarylethanol products were determined and compared to those of the same products obtained from the reaction of p-tolyl and p-methoxyphenyl Grignard reagents with optically active phenyloxirane. The p-tolyl Grignard and Friedel-Crafts products gave similar enantiomeric ratios (approximately 64:36 and 60:40, respectively). However, in the p-methoxyphenyl products from the Grignard and Friedel-Crafts reactions, different enantiomers predominated (ratios of 33:67 and 62:38, respectively).  相似文献   

20.
Aryl 3- and 4-pyridyl sulfoxides undergo ligand exchange in reactions with aryl Grignard reagents to generate 3- and 4-pyridyl Grignard reagents, which, upon treatment with aldehydes or ketones, give the corresponding addition products in moderate-to-good yields. The mechanism for the exchange reaction was investigated by treating optically active 3- and 4-pyridyl p-tolyl sulfoxides with a phenyl Grignard reagent. Inversion of the configuration of the sulfur atom was the stereochemical result of the reactions. In the reactions of phenyl 2-pyridyl sulfoxide with Grignard reagents, the leaving ability of the 2-pyridyl group competes with that of the phenyl group. Both the experimental and MO calculated enthalpy values for deprotonation of α-, β-, and γ-protons of pyridine in the gas phase [1] are in accordance with the following order of the leaving abilities of aryl and pyridyl Grignard reagents: 4-PyMgBr > 3-PyMgBr » PhMgBr > p-TolMgBr > 2-PyMgBr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号