首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is the second one in the series of two papers devoted to detailed investigation of the response regimes of a linear oscillator with attached nonlinear energy sink (NES) under harmonic external forcing and assessment of possible application of the NES for vibration absorption and mitigation. In this paper, we study the performance of a strongly nonlinear, damped vibration absorber with relatively small mass attached to a periodically excited linear oscillator. We present a nonlinear absorber tuning procedure in the vicinity of (1:1) resonance which provides the best total system energy suppression, using analytical and numerical tools. A linear absorber is also tuned according to the same criterion of total system energy suppression as the nonlinear one. Both optimally tuned absorbers are compared under common parameters of damping, external forcing but different absorber stiffness characteristics; certain cases for which nonlinear absorber is preferable over the linear one are revealed and confirmed numerically.  相似文献   

2.
The nonlinear vibrations of a composite laminated cantilever rectangular plate subjected to the in-plane and transversal excitations are investigated in this paper. Based on the Reddy??s third-order plate theory and the von Karman type equations for the geometric nonlinearity, the nonlinear partial differential governing equations of motion for the composite laminated cantilever rectangular plate are established by using the Hamilton??s principle. The Galerkin approach is used to transform the nonlinear partial differential governing equations of motion into a two degree-of-freedom nonlinear system under combined parametric and forcing excitations. The case of foundational parametric resonance and 1:1 internal resonance is taken into account. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. The numerical method is used to find the periodic and chaotic motions of the composite laminated cantilever rectangular plate. It is found that the chaotic responses are sensitive to the changing of the forcing excitations and the damping coefficient. The influence of the forcing excitation and the damping coefficient on the bifurcations and chaotic behaviors of the composite laminated cantilever rectangular plate is investigated numerically. The frequency-response curves of the first-order and the second-order modes show that there exists the soft-spring type characteristic for the first-order and the second-order modes.  相似文献   

3.
This paper is focused on nonlinear dynamics of a shell-shaped workpiece during high speed milling. The shell-shaped workpiece is modeled as a double-curved cantilevered shell subjected to a cutting force with time delay effects. Equations of motion are derived by using the Hamilton principle based on the classical shell theory and von Karman strain-displacement relation. The resulting nonlinear partial differential equations are reduced to a two-degree-of-freedom nonlinear system by applying the Galerkin approach. The averaging method is used to obtain four-dimensional averaged equations for the case of foundational parametric resonance and 1:2 internal resonance. Using a numerical method, the dynamics of the cantilevered shell-shaped workpiece is studied under time-delay effects, parametric excitation, and forcing excitation. It is found that time-delay parameters have great impact on chaotic motion. With increasing amplitude of forcing and parametric excitations, the shell-shaped workpiece exhibits different dynamic behavior.  相似文献   

4.
This study focuses on the relative importance of two sources of nonlinearities affecting submerged cable response. The first of these is the added fluid damping offered by the surrounding medium while the second is the geometric stiffening offered by the cable through finite extensions of its centerline. The contribution of each nonlinear effect, taken separately and in tandem, is evaluated herein through the study of structural waves that form in the (out-of-plane) direction normal to the cable equilibrium plane.Numerical solutions are pursued herein using a finite difference algorithm which is brought to bear on two nonlinear cable/fluid models including: (1)~a nonlinear submerged cable model in which hydrodynamic drag is the sole nonlinear mechanism (referred to herein as the 'nonlinear drag model'); and (2)~a nonlinear submerged cable model in which hydrodynamic drag and geometric stiffening are both active nonlinear mechanisms (the 'nonlinear elastic-drag model'). Numerical solutions for propagating cable waves are developed for the case of a long suspension subjected to a concentrated harmonic excitation source. Conclusions are subsequently drawn regarding the spatial decay of the resulting out-of-plane waves and the dynamic cable tension induced by these waves. The effect of these two nonlinear mechanisms is further explored through the analysis of two additional, linear models: (3)~a simple linear taut string model without drag (the 'simple model'); and (4)~a linear taut string model with linear drag (the 'linear drag model'). The results of all models are critically compared and the range of validity of the linear/cable fluid models are assessed.  相似文献   

5.
参数激励与强迫激励联合作用下非线性振动系统的分叉   总被引:11,自引:2,他引:11  
张伟  霍拳忠 《力学学报》1991,23(4):464-474
本文利用多尺度法研究了参数激励与强迫激励联合作用下非线性振动系统的分叉问题,给出了分叉集和八种分叉响应曲线。  相似文献   

6.
The resonant flow of an incompressible, inviscid fluid with surface tension on varying bottoms was researched. The effects of different bottoms on the nonlinear surface waves were analyzed. The waterfall plots of the wave were drawn with Matlab according to the numerical simulation of the fKdV equation with the pseudo-spectral method. Prom the waterfall plots, the results are obtained as follows: for the convex bottom, the waves system can be viewed as a combination of the effects of forward-step forcing and backward step forcing, and these two wave systems respectively radiate upstream and downstream without mutual interaction. Nevertheless, the result for the concave bottom is contrary to the convex one. For some combined bottoms, the wave systems can be considered as the combination of positive forcing and negative forcing.  相似文献   

7.
This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω 1, ω 2, and ω 3 such that ω 3?2ω 2?4ω 1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω 3?ω 2?2ω 1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits.  相似文献   

8.
The system under investigation comprises a linear oscillator coupled to a strongly asymmetric 2 degree-of-freedom (2DOF) purely cubic nonlinear energy sink (NES) under harmonic forcing. We study periodic, quasiperiodic, and chaotic response regimes of the system in the vicinity of 1:1 resonance and evaluate the abilities of the 2DOF NES to mitigate the vibrations of the primary system. Earlier research showed that single degree-of-freedom (SDOF) NES can efficiently mitigate the undesired oscillations, if limited to relatively low forcing amplitudes. In this paper, we demonstrate that the additional degree-of-freedom of the NES considerably broadens the range of amplitudes where efficient mitigation is possible. Efficiency limits of the system with the 2DOF NES are evaluated numerically. Analytic approximations for simple response regimes are also developed.  相似文献   

9.

Tuning of linear frequency and nonlinear frequency response of microelectromechanical systems is important in order to obtain high operating bandwidth. Linear frequency tuning can be achieved through various mechanisms such as heating and softening due to DC voltage. Nonlinear frequency response is influenced by nonlinear stiffness, quality factor and forcing. In this paper, we present the influence of nonlinear coupling in tuning the nonlinear frequency response of two transverse modes of a fixed–fixed microbeam under the influence of direct and parametric forces near and below the coupling regions. To do the analysis, we use nonlinear equation governing the motion along in-plane and out-of-plane directions. For a given DC and AC forcing, we obtain static and dynamic equations using the Galerkin’s method based on first-mode approximation under the two different resonant conditions. First, we consider one-to-one internal resonance condition in which the linear frequencies of two transverse modes show coupling. Second, we consider the case in which the linear frequencies of two transverse modes are uncoupled. To obtain the nonlinear frequency response under both the conditions, we solve the dynamic equation with the method of multiple scale (MMS). After validating the results obtained using MMS with the numerical simulation of modal equation, we discuss the influence of linear and nonlinear coupling on the frequency response of the in-plane and out-of-plane motion of fixed–fixed beam. We also analyzed the influence of quality factor on the frequency response of the beams near the coupling region. We found that the nonlinear response shows single curve near the coupling region with wider width for low value of quality factor, and it shows two different curves when the quality factor is high. Consequently, we can effectively tune the quality factor and forcing to obtain different types of coupled response of two modes of a fixed–fixed microbeam.

  相似文献   

10.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

11.
We study the 1:3 resonant dynamics of a two degree-of-freedom (DOF) dissipative forced strongly nonlinear system by first examining the periodic steady-state solutions of the underlying Hamiltonian system and then the forced and damped configuration. Specifically, we analyze the steady periodic responses of the two DOF system consisting of a grounded strongly nonlinear oscillator with harmonic excitation coupled to a light linear attachment under condition of 1:3 resonance. This system is particularly interesting since it possesses two basic linearized eigenfrequencies in the ratio 3:1, which, under condition of resonance, causes the localization of the fundamental and third-harmonic components of the responses of the grounded nonlinear oscillator and the light linear attachment, respectively. We examine in detail the topological structure of the periodic responses in the frequency–energy domain by computing forced frequency–energy plots (FEPs) in order to deduce the effects of the 1:3 resonance. We perform complexification/averaging analysis and develop analytical approximations for strongly nonlinear steady-state responses, which agree well with direct numerical simulations. In addition, we investigate the effect of the forcing on the 1:3 resonance phenomena and conclude our study with the stability analysis of the steady-state solutions around 1:3 internal resonance, and a discussion of the practical applications of our findings in the area of nonlinear targeted energy transfer.  相似文献   

12.
The incompressible Navier–Stokes equation is considered in the limit of rapid rotation (small Ekman number). The analysis is limited to horizontal scales small enough so that both horizontal and vertical velocities are comparable, but the horizontal velocity components are still in geostrophic balance. Asymptotic analysis leads to a pair of nonlinear equations for the vertical velocity and vertical vorticity coupled by vertical stretching. Statistically stationary states are maintained against viscous dissipation by boundary forcing or energy injection at larger scales. For thermal forcing direct numerical simulation of the reduced equations reveals the presence of intense vortical structures spanning the layer depth, in excellent agreement with simulations of the Boussinesq equations for rotating convection by Julien et al. (1996). Received 30 May 1997 and accepted 4 January 1998  相似文献   

13.
We consider steady free surface two-dimensional flow due to a localized applied pressure distribution under the effects of both gravity and surface tension in water of constant depth, and in the presence of a uniform stream. The fluid is assumed to be inviscid and incompressible, and the flow is irrotational. The behavior of the forced nonlinear waves is characterized by three parameters: the Froude number, F, the Bond number, τ > 1/3, and the magnitude and sign of the pressure forcing parameter ɛ. The fully nonlinear wave problem is solved numerically by using a boundary integral method. For small amplitude waves and F < 1 but not too close to 1, linear theory gives a good prediction for the numerical solution of the nonlinear problem in the case of bifurcation from the uniform flow. As F approaches 1, the nonlinear terms need to be taken account of. In this case the forced Korteweg-de Vries equation is found to be an appropriate model to describe bifurcations from an unforced solitary wave. In general, it is found that for given values of F < 1 and τ > 1/3, there exists both elevation and depression waves. In some cases, a limiting configuration in the form of a trapped bubble occurs in the depression wave solutions.  相似文献   

14.
In this paper, we discuss existence, stability, and symmetry of solutions for networks of parametrically forced oscillators. We consider a nonlinear oscillator model with strong 2:1 resonance via parametric excitation. For uncoupled systems, the 2:1 resonance property results in sets of solutions that we classify using a combinatorial approach. The symmetry properties for solution sets are presented as are the group operators that generate the isotropy subgroups. We then impose weak coupling and prove that solutions from the uncoupled case persist for small coupling by using an appropriate Poincaré map and the Implicit Function Theorem. Solution bifurcations are investigated as a function of coupling strength and forcing frequency using numerical continuation techniques. We find that the characteristics of the single oscillator system are transferred to the network under weak coupling. We explore interesting dynamics that emerge with larger coupling strength, including anti-synchronized chaos and unsynchronized chaos. A classification for the symmetry-breaking that occurs due to weak coupling is presented for a simple example network.  相似文献   

15.
Nonlinear Dynamics of Floating Cranes   总被引:7,自引:0,他引:7  
The nonlinear dynamic responses of moored crane vessels to regular wavesare investigated experimentally and theoretically. The main subject ofinterest are nonlinear phenomena like bifurcations and the existence ofmultiple attractors. In the experimental part of the work, a mooredmodel of a crane vessel has been excited by regular waves in a wavetank. A special mechanism has been developed to model the nonlinearbehavior of real mooring systems. The theoretical part of the workconcerns the mathematical modeling of the floating cranes. Twomathematical models of different levels of complexity are presented. Twodifferent tools are used to systematically determine the responses ofthe systems to periodic forcing of waves. Firstly, the path-followingtechniques in combination with numerical integration of equations ofmotion applied to a full nonlinear model give insight into the dynamicsin time domain. Secondly, the multiple scales method allows for ananalytical investigation of simplified nonlinear models in frequencydomain. Many results of computations for two crane vessels, barge andship, are presented. Special attention is paid to oscillations near thefrequencies of primary resonances and to subharmonic motions. Anexcellent agreement is found between the results of time-domain andfrequency-domain analysis. The computational examples chosen correspondto the models used not only in the present experiments but in theexperiments of others as well. The results presented in the work allow usto draw several important conclusions concerning the dynamic behavior offloating cranes during offshore operations. Both the developed modelsand the analytical tools can be used to identify the limits of theoperating range of floating cranes.  相似文献   

16.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

17.
New test cases for frictionless, three‐dimensional hydrostatic flows have been derived from some known analytical solutions of the two‐dimensional shallow water equations. The flow domain is a paraboloid of revolution and the flow is determined by the initial conditions, the nonlinear advective terms, the Coriolis acceleration and by the hydrostatic pressure. Wetting and drying is also included. Some specific properties of the exact solutions are discussed under different hypothesis and relative importance of the forcing terms. These solutions are proposed for testing the stability, the accuracy and the efficiency of numerical models to be used for simulating environmental hydrostatic flows. The computed solutions obtained with a semi‐implicit finite difference—finite volume algorithm on unstructured grid are compared with the corresponding analytical solutions in both two and three space dimension. Excellent agreement are obtained for the velocity and for the resulting water surface elevation. Comparison of the computed inundation area also shows a good agreement with the analytical solution with degrading accuracy observed when the inundation area becomes relatively large and for long simulation time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Nonlinear normal modes for elastic structures have been studied extensively in the literature. Most studies have been limited to small nonlinear motions and to structures with geometric nonlinearities. This work investigates the nonlinear normal modes in elastic structures that contain essential inertial nonlinearities. For such structures, based on the works of Crespo da Silva and Meirovitch, a general methodology is developed for obtaining multi-degree-of-freedom discretized models for structures in planar motion. The motion of each substructure is represented by a finite number of substructure admissible functions in a way that the geometric compatibility conditions are automatically assured. The multi degree-of-freedom reduced-order models capture the essential dynamics of the system and also retain explicit dependence on important physical parameters such that parametric studies can be conducted. The specific structure considered is a 3-beam elastic structure with a tip mass. Internal resonance conditions between different linear modes of the structure are identified. For the case of 1:2 internal resonance between two global modes of the structure, a two-mode nonlinear model is then developed and nonlinear normal modes for the structure are studied by the method of multiple time scales as well as by a numerical shooting technique. Bifurcations in the nonlinear normal modes are shown to arise as a function of the internal mistuning that represents variations in the tip mass in the structure. The results of the two techniques are also compared.  相似文献   

19.
The purpose of this paper is to examine a highly nonlinear model of a slender beam which yields chaotic solutions for some forcing amplitudes. The study is unique in that the governing partial differential equations are solved directly, and that the model lends itself to a more physical analysis of the beam than traditional chaotic models. In addition, the analysis will provide proof that a beam experiencing moderate deformations without stops or an initial axial force can exhibit chaotic motion. The model represents a simply-supported. Euler-Bernoulli beam subjected to a transverse load. The forcing function is sinusoidally distributed in space with an amplitude which also varies sinusoidally in time and is assumed to reach a maximum sufficient to allow nonlinearities associated with finite deformations to become important. During motion, even though displacements are large, the beam is assumed to attain only small strain levels and thus is assumed to be linearly elastic. The results indicate that for most levels of the forcing function the response of the beam is periodic. However, the steady state motion is not sinusoidal in time and in fact exhibits some bifurcated motions. At a certain level of the forcing amplitude, an asymmetry is observed and the periodicity of the motion breaks down as the beam experiences a period doubling cascade which culminates in a chaotic motion. The progression from periodic to chaotic motion is presented through a series of phase plane and Poincané plots, and physical variables such as bending moment are examined.  相似文献   

20.
海岸波浪场模型研究进展   总被引:2,自引:0,他引:2  
黄虎 《力学进展》2001,31(4):592-610
从建模原理、波浪在近岸区域传播的众多机制、模型的类别、优势、局限性以及模型在未来的发展趋势等方面,综述了在海岸工程实践中广泛运用的以下两大类海岸波浪场预测模型的最新研究进展:(1)能量平衡模型.它一般用来预测海洋深水波候,已发展到相当完善的阶段,例如,最为著名的WAM3G模型.这种模型在海岸工程中的作用就在于可以模拟施加在波浪上的随时间变化的风场效应.(2)质量、动量守恒模型.它在海岸工程中应用最为普遍,并且内容丰富,数值技巧多样.目前包含了以下代表性的模型:缓坡方程、抛物型方程、非线性浅水方程、高阶Boussinesq型方程、Green-Naghdi理论.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号