首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for globally minimizing concave functions over convex sets whose defining constraints may be nonlinear. The algorithm generates linear programs whose solutions minimize the convex envelope of the original function over successively tighter polytopes enclosing the feasible region. The algorithm does not involve cuts of the feasible region, requires only simplex pivot operations and univariate search computations to be performed, allows the objective function to be lower semicontinuous and nonseparable, and is guaranteed to converge to the global solution. Computational aspects of the algorithm are discussed.  相似文献   

2.
A crucial problem for many global optimization methods is how to handle partition sets whose feasibility is not known. This problem is solved for broad classes of feasible sets including convex sets, sets defined by finitely many convex and reverse convex constraints, and sets defined by Lipschitzian inequalities. Moreover, a fairly general theory of bounding is presented and applied to concave objective functions, to functions representable as differences of two convex functions, and to Lipschitzian functions. The resulting algorithms allow one to solve any global optimization problem whose objective function is of one of these forms and whose feasible set belongs to one of the above classes. In this way, several new fields of optimization are opened to the application of global methods.  相似文献   

3.
Convex and concave envelopes play important roles in various types of optimization problems. In this article, we present a result that gives general guidelines for constructing convex and concave envelopes of functions of two variables on bounded quadrilaterals. We show how one can use this result to construct convex and concave envelopes of bilinear and fractional functions on rectangles, parallelograms and trapezoids. Applications of these results to global optimization are indicated.  相似文献   

4.
In 1964 Tuy introduced a new type of cutting plane, the concavity cut, in the context of concave minimization. These cutting planes, which are also known as convexity cuts, intersection cuts and Tuy cuts, have found application in several algorithms, e.g., branch and bound algorithm, conical algorithm and cutting plane algorithm, and also in algorithms for other optimization problems, e.g., reverse convex programming, bilinear programming and Lipschitzian optimization. Up to now, however, it has not been possible to either prove or disprove the finite convergence of a pure cutting plane algorithm for concave minimization based solely on these cutting planes. In the present paper a modification of the concavity cut is proposed that yields deeper cutting planes and ensures the finite convergence of a pure cutting plane algorithm based on these cuts.  相似文献   

5.
This paper presents two linear cutting plane algorithms that refine existing methods for solving disjoint bilinear programs. The main idea is to avoid constructing (expensive) disjunctive facial cuts and to accelerate convergence through a tighter bounding scheme. These linear programming based cutting plane methods search the extreme points and cut off each one found until an exhaustive process concludes that the global minimizer is in hand. In this paper, a lower bounding step is proposed that serves to effectively fathom the remaining feasible region as not containing a global solution, thereby accelerating convergence. This is accomplished by minimizing the convex envelope of the bilinear objective over the feasible region remaining after introduction of cuts. Computational experiments demonstrate that augmenting existing methods by this simple linear programming step is surprisingly effective at identifying global solutions early by recognizing that the remaining region cannot contain an optimal solution. Numerical results for test problems from both the literature and an application area are reported.  相似文献   

6.
This paper is concerned with the global optimization problem of minimizing a concave function subject to linear constraints and an additional facial reverse convex constraint. Here, the feasible set is the union of some faces of the polyhedron determined by the linear constraints. Several well-known mathematical problems can be written or transformed into the form considered. The paper addresses the Lagrangian duality of the problem. It is shown that, under slight assumptions, the duality gap can be closed with a finite dual multiplier. Finite methods based on solving concave minimization problems are also proposed. We deal with the advantages accrued when outer approximation, cutting plane, or branch-and-bound methods are used for solving these subproblems.This research was supported in part by the Hungarian National Research Foundation, Grant OTKA 2568. The author wishes to thank the Associate Editor and the referees for their valuable comments.  相似文献   

7.
A new type of cutting plane, termed a decomposition cut, is introduced that can be constructed under the same assumptions as the well-known convexity cut. Therefore it can be applied in algorithms (e.g. cutting plane, branch-and-cut) for various problems of global optimization, such as concave minimization, bilinear programming, reverse-convex programming, and integer programming. In computational tests with cutting plane algorithms for concave minimization, decomposition cuts were shown to be superior to convexity cuts.  相似文献   

8.
This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.  相似文献   

9.
We consider a class of convex bounded subsets of a separable Banach space. This class includes all convex compact sets as well as some noncompact sets important in applications. For sets in this class, we obtain a simple criterion for the strong CE-property, i.e., the property that the convex closure of any continuous bounded function is a continuous bounded function. Some results are obtained concerning the extension of functions defined at the extreme points of a set in this class to convex or concave functions defined on the entire set with preservation of closedness and continuity. Some applications of the results in quantum information theory are considered.  相似文献   

10.
We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.  相似文献   

11.
We study a steered sequential gradient algorithm which minimizes the sum of convex functions by proceeding cyclically in the directions of the negative gradients of the functions and using steered step-sizes. This algorithm is applied to the convex feasibility problem by minimizing a proximity function which measures the sum of the Bregman distances to the members of the family of convex sets. The resulting algorithm is a new steered sequential Bregman projection method which generates sequences that converge if they are bounded, regardless of whether the convex feasibility problem is or is not consistent. For orthogonal projections and affine sets the boundedness condition is always fulfilled.  相似文献   

12.
We consider the problem of minimizing an indefinite quadratic objective function subject to twosided indefinite quadratic constraints. Under a suitable simultaneous diagonalization assumption (which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem of minimizing a concave quadratic function subject to finitely many convex quadratic constraints, which is also shown to be equivalent to a minimax convex problem. In both cases we derive the explicit nonlinear transformations which allow for recovering the optimal solution of the nonconvex problems via their equivalent convex counterparts. Special cases and applications are also discussed. We outline interior-point polynomial-time algorithms for the solution of the equivalent convex programs. This author's work was partially supported by GIF, the German-Israeli Foundation for Scientific Research and Development and by the Binational Science Foundation. This author's work was partially supported by National Science Foundation Grants DMS-9201297 and DMS-9401871.  相似文献   

13.
In this work we present a global optimization algorithm for solving a class of large-scale nonconvex optimization models that have a decomposable structure. Such models, which are very expensive to solve to global optimality, are frequently encountered in two-stage stochastic programming problems, engineering design, and also in planning and scheduling. A generic formulation and reformulation of the decomposable models is given. We propose a specialized deterministic branch-and-cut algorithm to solve these models to global optimality, wherein bounds on the global optimum are obtained by solving convex relaxations of these models with certain cuts added to them in order to tighten the relaxations. These cuts are based on the solutions of the sub-problems obtained by applying Lagrangean decomposition to the original nonconvex model. Numerical examples are presented to illustrate the effectiveness of the proposed method compared to available commercial global optimization solvers that are based on branch and bound methods.  相似文献   

14.
15.
The global minimization of large-scale partially separable non-convex problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of a separable concave part, an unseparated convex part, and a strictly linear part, which are all coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. An important special class of problems which can be reduced to this form are the synomial global minimization problems. Such problems often arise in engineering design, and previous computational methods for such problems have been limited to the convex posynomial case. In the current work, a convex underestimating function to the objective function is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and convex underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results obtained on the four processor Cray 2, both sequentially and in parallel on all four processors, are also presented.  相似文献   

16.
We consider submodular programs which are problems of minimizing submodular functions on distributive lattices with or without constraints. We define a convex (or concave) conjugate function of a submodular (or supermodular) function and show a Fenchel-type min-max theorem for submodular and supermodular functions. We also define a subgradient of a submodular function and derive a necessary and sufficient condition for a feasible solution of a submodular program to be optimal, which is a counterpart of the Karush-Kuhn-Tucker condition for convex programs. This work is supported by the Alexander von Humboldt fellowship (1982/83), West Germany.  相似文献   

17.
This paper addresses itself to the algorithm for minimizing the product of two nonnegative convex functions over a convex set. It is shown that the global minimum of this nonconvex problem can be obtained by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in a higher dimensional space and to apply a branch-and-bound algorithm using an underestimating function. Computational results indicate that our algorithm is efficient when the objective function is the product of a linear and a quadratic functions and the constraints are linear. An extension of our algorithm for minimizing the sum of a convex function and a product of two convex functions is also discussed.  相似文献   

18.
We consider cutting plane methods for minimizing a convex (possibly nondifferentiable) function subject to box constraints. At each iteration, accumulated subgradient cuts define a polytope that localizes the minimum. The objective and its subgradient are evaluated at the analytic center of this polytope to produce one or two cuts that improve the localizing set. We give complexity estimates for several variants of such methods. Our analysis is based on the works of Goffin, Luo and Ye. Research supported by the State Committee for Scientific Research under Grant 8S50502206.  相似文献   

19.
Depth-Optimized Convexity Cuts   总被引:1,自引:0,他引:1  
This paper presents a general, self-contained treatment of convexity or intersection cuts. It describes two equivalent ways of generating a cut—via a convex set or a concave function—and a partial-order notion of cut strength. We then characterize the structure of the sets and functions that generate cuts that are strongest with respect to the partial order. Next, we specialize this analytical framework to the case of mixed-integer linear programming (MIP). For this case, we formulate two kinds of the deepest cut generation problem, via sets or via functions, and subsequently consider some special cases which are amenable to efficient computation. We conclude with computational tests of one of these procedures on a large set of MIPLIB problems.  相似文献   

20.
A problem of minimizing a sum of many convex piecewise-linear functions is considered. In view of applications to two-stage linear programming, where objectives are marginal values of lower level problems, it is assumed that domains of objectives may be proper polyhedral subsets of the space of decision variables and are defined by piecewise-linear induced feasibility constraints. We propose a new decomposition method that may start from an arbitrary point and simultaneously processes objective and feasibility cuts for each component. The master program is augmented with a quadratic regularizing term and comprises an a priori bounded number of cuts. The method goes through nonbasic points, in general, and is finitely convergent without any nondegeneracy assumptions. Next, we present a special technique for solving the regularized master problem that uses an active set strategy and QR factorization and exploits the structure of the master. Finally, some numerical evidence is given.On leave from Instytut Automatyki, Politechnika Warszawska, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号