首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The functional dependence of the critical current density on magnetic field, Jc(H), observed at fixed temperatures in the unconventional type-II superconductor, LaAg1−cMnc (c=0.1,0.2,0.3) alloys, but not the relative magnitude of Jc in different alloy compositions at any given temperature and field, is adequately described by the exponential-decay critical state model. In accordance with the predictions of the Kramer's flux-pinning model, the peak value of the pinning force density with the exponent 1.7?m?2.8 and scales with h=H/Hc2, where Hc2 is the upper critical field. Irrespective of sample composition and temperature in the superconducting state, the pinning of the flux line lattice (FLL) dominates over the plastic FLL shear.  相似文献   

2.
A contact-free method to obtain the current-voltage characteristics (CVC) of hard superconductors by measuring the relaxation of the magnetization in a perpendicular magnetic field is developed. The relaxation curves obtained for melt-textured YBCO samples are well fitted by curves calculated within the electrodynamic model using a power-law CVC. This procedure uses only two fitting parameters, namely, the critical sheet current Jc and the exponent m of the power-law CVC.  相似文献   

3.
In a thin film of superconducting Y Ba2Cu3O7 the impact of surface acoustic waves (SAWs) traveling on the piezoelectric substrate is investigated. A pronounced interaction between the ultrasonic waves and the vortex system in the type II superconductor is observed. The occurrence of a SAW-induced dc voltage perpendicular to the sound path is interpreted as dragging of vortices by the piezoacoustic SAW, which acts as a conveyor for the flux quanta. The antisymmetry of this voltage with respect to the magnetic field directly evidences the induced, directed flux motion. This dynamic manipulation of vortices can be seen as an important step towards flux-based electronic devices.  相似文献   

4.
Dynamics in two-dimensional vortex systems with random pinning centres is investigated using molecular dynamical simulations. The driving force and temperature dependences of vortex velocity are investigated. Below the critical depinning force Fc, a creep motion of vortex is found at low temperature. At forces slightly above Fc, a part of vortices flow in winding channels at zero temperature. In the vortex channel flow region, we observe the abnormal behaviour of vortex dynamics: the velocity is roughly independent of temperature or even decreases with temperature at low temperatures. A phase diagram that describes different dynamics of vortices is presented.  相似文献   

5.
MgB1.9C0.1 samples are synthesized under the ambient pressure (AP) and high pressure (HP), respectively. The further studies demonstrate different field-dependence of the critical current density Jc(H) in each sample. In the view of two-gap superconductivity in these samples, δTc pinning (resulting from the spatial fluctuations of the transition temperature) is dominant in the AP sample, while in the HP sample, both δTc and δl pinning (due to the mean-free-path fluctuations) act together and their contributions vary with temperature. Besides the improvement of Hc2(0), due to the different pinning mechanism, Jc(H) of the HP sample shows a slower decay with the increasing fields than that of the AP sample in high fields, which suggests a possible method of retarding the rapid decay of Jc(H) under elevated fields.  相似文献   

6.
We review the methods of calculating the effective activation energy Ueff(T,B,J) for both transport measurements and magnetic decay, together with some theoretical models. Then, we apply these methods to our Hg-1223 single-phase superconductor to obtain the activation energy. Transport results give that the magnetic field and temperature dependence of the Ueff can be well described as U0B−α(1−T/Tc)m. Magnetic relaxation shows that the current density dependence of U(J) can be scaled onto a single curve, which can be considered as the activation energy at some temperature T0. The pinning mechanism in the measured temperature range does not change, and the activation energy depends separately on the three variables: T, B, and J, are responsible for the magnetic decay data scaling onto a single curve at various temperatures. As temperatures close to zero and near Tc, thermally assisted flux motion model is no longer valid since other processes dominate.  相似文献   

7.
The vortex matter phase transitions and intrinsic pinning effect were investigated in an MgB2 single crystal using the torque magnetometry. For the field directions apart from the ab plane, we succeed in the observation of the vortex lattice melting transitions, which are transformed from the order-disorder transitions at low temperatures. Both transition fields with field directions can be describe by the GL effective mass model. For the field direction along the ab plane, these transitions become unobservable. Instead, the sudden increase in the hysteresis of magnetization curve occurs, indicating the existence of the intrinsic pinning coming from the layer structure.  相似文献   

8.
A superconducting thin film with regular triangular arrays has been fabricated to explore the anisotropic vortex pinning behavior. We found that the critical currents for these films depend strongly on the current directions. Some interesting temperature-dependent phenomena are observed and discussed. We also made molecular dynamic simulations to study the dynamics of the vortex motion. The simulation results confirm the anisotropic features we found in the experiments.  相似文献   

9.
In view of the question about the vortex glass theory of the freezing of disordered vortex matter raised by recent experimental observations, we reinvestigate the critical scaling of high Tc superconductors. It is found that the dc current-voltage characteristic of mixed state superconductors has a general form of extended power law which is based on the Ginzburg-Landau (GL) functional in the similar way as the vortex glass theory. Isotherms simulated from this nonlinear equation fit the experimental I- V data of Strachan et al. [Phys. Rev. Left. 87(2001) 067007]. The puzzling question of the derivative plot for the I - V curves and the controversy surrounding the values of critical exponents are discussed.  相似文献   

10.
The intermetallic compound, YRhAl, has been prepared and is found to be isomorphic with RRhAl (R=Pr, Nd, Gd, Ho and Tm) compounds crystallizing in the orthorhombic TiNiSi-type structure (space group Pnma). Heat capacity and electrical resistivity measurements in the He-3 temperature range reveal that this compound is superconducting with a transition temperature, Tc, of 0.9 K. The electronic specific heat coefficient, γ, and the Debye temperature are found to be 6.1 mJ/mol K and 197 K, respectively. The specific heat jump at the superconducting transition is found to be consistent with the BCS weak-coupling limit. This combined with the earlier observation of superconductivity in LaRhAl (Tc=2.4 K) having a different structure than that of YRhAl, suggests that the underlying structure is not very crucial for the occurrence of superconductivity in RRhAl series of compounds.  相似文献   

11.
Bulk polycrystalline samples of Eu2O3-doped MgB2 have been synthesized by a standard solid state reaction route and their structural and superconducting properties have been investigated. As a function of Eu2O3 content we have found a significant increase in the critical current density (Jc) and the irreversibility field (Hirr) in the magnetic field range 0–6 T. The XRD results reveal the presence of MgO and EuB6 secondary phases along with the main hexagonal phase of MgB2. The strain values and the lattice distortions have been found to increase almost linearly with the nominal Eu2O3 content. The observed significant improvement in Jc(H) and Hirr in the Eu2O3-doped MgB2 samples, thus is mainly attributed to the lattice distortions introduced by Eu2O3 doping.  相似文献   

12.
It is shown that the sign of the surface energy of a two-component superconductor is determined not only by the Ginzburg-Landau parameters of two superconducting components, but also by a temperature-independent parameter κξ, which is defined as the ratio of the coherence lengths of two components.  相似文献   

13.
The noble metal diboride AuB2, a potential candidate for superconductor, is studied by an ab initio method in comparison to the superconducting MgB2. The results, described in terms of equilibrium lattice constants, bulk modulus, pressure derivative of bulk modulus and their in- and out-of-plane linear values, volume coefficient of Tc, density of states, band structure, show some similarity as well as dissimilarity between the behaviour of the two compounds. The implications for the behaviour are discussed.  相似文献   

14.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.  相似文献   

15.
Studies on some new members of the cobalt perovskite Gd1−xSrxBaCo2O5+δ with low strontium concentrations (0<x<0.1) have been carried out with the aim of investigating possible metallization of the GdBaCo2O5+δ system by hole doping. Low temperature electrical resistivity, magnetic susceptibility and thermopower of the above system have been studied. The pristine compound with x=0 and δ∼0.5 exhibits a semiconductor-like behavior and two magnetic transitions below room temperature. Upon Sr2+ substitution, there is a fall in resistivity by 2-3 orders of magnitude at low temperature and also a dramatic reduction in the ferromagnetic to antiferromagnetic transition temperature. These changes can be explained on the basis of hole doping (and increase in the Co4+content). Evidence for an increase in Co4+ with Sr2+ substitution is provided by iodometric analysis.  相似文献   

16.
We have performed low temperature resistivity p(T) and specific heat C(T) measurements on a superconducting polycrystalline Nb0.75Mg0.25B2 sample. The results indicate that the superconducting transition temperature is -4.6 K. The zero temperature upper critical field determined from the resistivity and specific heat is 3123 Oe. The electronic coefficient of specific heat γn=4.51 mJmol^-1K^2 and the Debye temperature θD=419 K are obtained by fitting the zero-field specific heat data in the normal state. At low temperatures, the electronic specific heat in the superconducting state follows Ces/γnTc = 2.84 exp(-1.21Tc/T). This indicates that the superconducting pairing in Nb0.75Mg0.25B2 has s-wave symmetry.  相似文献   

17.
Hot axial and hot isostatic pressing was applied for single-core MgB2/Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.  相似文献   

18.
First-principles full potential linearized augmented plane wave (FPLAPW) calculations have been performed to study the electronic structure and the magnetic properties of 3-Cyanobenzo-1,3,2-dithiazolyl,C7H3S2N2. The density of states (DOS), the total energy of the cell, and the spontaneous magnetic moment of C7H3S2N2 were all calculated. The calculations reveal that the low-temperature phase of the compound C7H3S2N2 has a stable metal-antiferromagnetic ground state, and there exists an antiferromagnetically coupled interactions between the dithiazolyl radical(1), which is in good agreement with experiment.  相似文献   

19.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

20.
Here we present Raman spectra of YBa2(Cu1–x Zn x )3O7 and YBa2(Cu1–x Ni x )3O7 as a function of temperature and Zn or Ni content. The temperature dependence of two modes at 340 and 440 cm–1 is analyzed. Similarly to the infrared measurements it is found that Zn substantially suppresses the superconductivity induced phonon softening whereas, Ni does not affect much that effect. Moreover, the superconductivity induced phonon stiffening of the 440 cm–1 mode completely disappeared with the Zn doping. We find this behaviour might support the model where Zn acts effectively as a magnetic pair breaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号