首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The behavior of a spherical bubble near a solid wall is analysed by considering the liquid compressibility. The equation of motion of the bubble with first order correction for the effects of liquid compressibility and solid wall is derived. The equation obtained here coincides with the known result in case of L or C . Further experimental study is made on the motion of bubbles produced by a spark discharge in water. The theoretical results are in good agreement with the experiments.
Das Verhalten einer kugelförmigen Blase in einer kompressiblen Flüssigkeit in der Nähe einer festen Wand
Übersicht Bei Berücksichtigung der Flüssigkeitskompressibilität wird das Verhalten einer kugelförmigen Blase in der Nähe einer festen Wand analysiert. Die Gleichung der Bewegung der Blase wird mit der Korrektur erster Ordnung für den Einfluß der Flüssigkeitskompressibilität und der festen Wand angegeben. Aus der erhaltenen Gleichung wird für L oder C das bekannte Ergebnis hergeleitet. Darüber hinaus wird eine experimentelle Untersuchung der Blasenbewegung durchgeführt. Die Blase wird mit Hilfe von Funkendurchschlägen zwischen Elektroden in Wasser erzeugt. Die theoretischen Ergebnisse stimmen gut mit den Experimenten überein.
  相似文献   

2.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

3.
Zusammenfassung Für den Fall, daß sich in einem halbunendlichen Körper in der Tiefe L eine Punkt- bzw. Linienquelle befindet und daß an der Oberfläche des Körpers ein örtlich und zeitlich konstanter Wärmeübergangskoeffizient herrscht, wird das stationäre Temperaturfeld analytisch berechnet. Beim Vergleich mit einer Näherungslösung (Hilfsschicht) zeigt sich, daß nicht so sehr die Biot-Zahl Bi= · L/ als vielmehr der größte Winkel zwischen Wandnormale und Wärmestromdichte in der Hilfsschicht ein Maß für die Genauigkeit der Näherungslösung ist.
Calculation of the temperature field around a buried point- and linesource, respectively, when the boundary condition is Newton's law
The steady state temperature field in a semiinfinite body caused by a buried point- and linesource, respectively, has been analytically calculated. The comparison with a simple approach (additional-layer) shows that the greatest angle between the normal of the wall and the heat flux density in the additional-layer, describes the quality of the approach better than the Biot-number Bi=L/ does.

Formelzeichen A Fläche - Bi Biot-Zahl - C Eigenwertfunktion - E1 Exponentialintegral - exp Exponentialfunktion - i komplexe Einheit - J0 Besselfunktion nullter Ordnung und 1. Grades - L Verlegungstiefe der Punkt- bzw. Linienquelle - Q Quellstärke - r Radius - Re Realteil eines Ausdruckes - T Temperatur - t Integrationsvariable - x, y, z Ortskoordinaten - Wärmeübergangskoeffizienten an der Erdoberfläche - Laplace-Operator - Wärmeleitfähigkeit des Erdbodens - dimensionslose Temperatur - Integrationsvariable - dimensionsloser Radius - komplexe Ortskoordination Indizes 0 Erdoberfläche, senkrecht über der Quelle - 1 Lösung für das 1. Randwertproblem - 3 Lösung für das 3. Randwertproblem - 13 Zusatzfunktion - w Erdoberfläche - Umgebungstemperatur - Näherungslösung  相似文献   

4.
Zusammenfassung Es wird zunächst die laminare natürliche Konvektionsströmung in der Nähe eines ebenen Staupunktes und für die senkrechte Platte betrachtet. Die Stoffgesetze werden in der Umgebung des Bezugszustandes T (Umgebungstemperatur) in Taylor-Reihen entwickelt, deren Koeffizienten dimensionslose Stoffkennzahlen — wie die Prandtl-Zahl — sind, die als freie Parameter in die Rechnung eingehen. Wandschubspannung und Wärmeübergang lassen sich für beliebige Stoffgesetze als Potenzreihe eines Parameters universell angeben. Der Entwicklungsparameter ist dabei ein Maß für die Stärke der Wärmeübertragung. Ein Vergleich mit der Methode der Stoffwertverhältnisse ermöglicht die Bestimmung der dort vorkommenden Exponenten für alle Stoffe, ohne daß auf empirische Daten zurückgegriffen werden muß. Aus den Ergebnissen wird dann eine nicht-rationale Näherungsbeziehung für beliebige zylindrische Körper gewonnen.
The influence of variable fluid properties to free convection laminar flows
First the free convection laminar flow near a plane stagnation point and at the vertical flat plate is investigated. The functions describing the temperature dependence of the fluid properties are expanded as Taylor series at the reference state T (ambient temperature) whose coefficients are dimensionless fluid properties like the Prandtl number, but are not specified for particular fluids. Shear stress and heat flux at the wall are given for arbitrary temperature dependence of the fluid properties as universal power series of a parameter. This perturbation parameter describes the strength of heat transfer. Comparison with the property-ratio method shows how the exponents in that method depend on the fluid properties without any need of empirical information. From these results a non-rational approximation for arbitrary cylindrical bodies is developed.

Formelzeichen c a integrierter Reibungsbeiwert, Gl. (64) - c f Reibungsbeiwert, Gl. (49) - c p spez. Wärmekapazität bei konstantem Druck - d Transformationsparameter, Gl. (6) - e Exponent bei der Verteilung der Wandtemperatur, Kap. 2 - f( s ) dimensionslose Stromfunktion, Gl. (7) - f 0 f(s) für konstante Stoffwerte - f 1i dimensionslose Stromfunktionen, Gl. (25) i=1,2, 3, 4 - g Erdbeschleunigung - Gr Grashof-Zahl, Kap. 4 - K a Kombination aus dimensionslosen Stoffwerten, Gl. (24) - k ij dimensionslose Stoffwerte, Gln. (13) bis (17) i=1, 2; j=,,,c - k ij dimensionslose Stoffwerte, Gln. (20) bis (23) i=1,2; j=, - L Bezugslänge, Tabelle 1 - L i Linear-Operatoren, Gln. (37) bis (40) i=1,2,3,4 - m i Exponenten, Gl. (59), i=1, 2, 3, 4 - Hilfsfunktionen, Gl. (53), i=1,2, 3, 4 - n i Exponenten, Gl. (60), i=1,2,3,4 - Hilfsfunktionen, Gl. (55), i=1, 2, 3, 4 - N u Nusselt-Zahl, Kap. 6 - Pr *,Pr Prandtl-Zahl, Tabelle 1 - q w Wärmefluß an der Wand, Gl. (50) - Q w Gesamt-Wärmefluß an der Wand, Gl. (63) - T absolute Temperatur - u b Bezugsgeschwindigkeit, Kap. 4 - u, v Geschwindigkeitskomponenten - x, y kartesische Koordinaten - Kontur-Neigungswinkel, Bild 1 - Volumenausdehnungskoeffizient, Gl. (13) - Entwicklungsparameter, Gl. (15) - Viskosität - s Ähnlichkeitsvariable, Gl. (6) - ( S ) dimensionslose Temperatur, Tabelle 1 - 0 (S) dimensionslose Temperatur bei konstanten Stoffwerten - 1i imensionslose Temperaturen, Gl. (26) i=1,2, 3, 4 - Wärmeleitfähigkeit - kinematische Viskosität - Dichte W Wandschubspannung - Stromfunktion - i Exponenten, Gl. (69) i=,,,cp Indizes c.p. konstante Stoffwerte - L an der StelleL * - m mittlerer Wert - W Wand - mgebungszustand  相似文献   

5.
Zusammenfassung Für die Oberflächenspannung von leichtem Wasser wurde von der Arbeitsgruppe III der International Association for the Properties of Steam eine Rahmentafel und eine einfache Interpolationsgleichung erarbeitet und als internationaler Standard empfohlen. Die Rahmentafel basiert auf allen bekannten Messungen der Oberflächenspannung, die einzelnen Meßreihen wurden entsprechend der Meßgenauigkeit gewichtet. Die Form der Interpolationsgleichung läßt sich physikalisch begründen. Sie stellt einen erweiterten Ansatz nach van der Waals dar, wobei der Exponent der Gleichung mit den Scaling-Laws in Übereinstimmung ist. Weiter wird für den praktischen Gebrauch eine einfache Beziehung für den Laplace-Koeffizienten und die Dichtedifferenz zwischen der flüssigen und gasförmigen Phase von leichtem Wasser angegeben.Für schweres Wasser kann die gleiche Form der Interpolationsgleichung verwendet werden, deren Koeffizienten angegeben sind. Allerdings beruht diese Gleichung nur auf einer Meßreihe.
Surface tension of normal and heavy water
A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard.The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the Scaling Laws. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data.

Formelzeichen A Oberfläche - Bo Koeffizient - F freie Energie - S Entropie - T Temperatur - TK kritische Temperatur - U innere Energie - V Volumen - W Arbeit - a Laplace-Koeffizient - a, aO Koeffizient - b, b1 Koeffizient - c Koeffizient - g Erdbeschleunigung - Exponent der isochoren Wärmekapazität - Exponent der Koexistenzkurve - Exponent des Laplace-Koeffizienten - Exponent der Korrelationslänge - Exponent der Oberflächenspannung - Exponent der Oberflächenspannung - reduzierte Temperaturdifferenz - Korrelationslänge - Dichte der flüssigen Phase - Dichte der gasförmigen Phase - o KoeffizientM  相似文献   

6.
Zusammenfassung Zur Klärung der physikalischen Vorgänge im Verdampferteil einer Filmverdampfungsbrennkammer wird in Erweiterung der adiabaten Verdunstung der Fall der einseitig benetzten ebenen Platte behandelt, die sowohl im Gleichals auch im Gegenstrom von der heißen Außenluft umströmt wird. Die für beide Strömungsfälle maßgebenden Grenzschichtgleichungen werden simultan unter Berücksichtigung temperatur- und konzentrationsabhängiger Stoffwerte mit einem impliziten Differenzenverfahren gelöst. Dabei ergeben sich für den Gleichstrom ähnliche Lösungen des gekoppelten Gleichungssystems, die mit den ähnlichen, für die adiabate Verdunstung geltenden Lösungen verglichen werden. Die Berechnung der durch den Stoffübergang beeinflußten Grenzschicht parameter zeigt, daß das Modell der Gegenstromanordnung, bei der sich nichtähnliche Profile entlang der Filmoberfl äche einstellen, für einen möglichen Einsatz in einer Filmverdampfungsbrennkammer am besten geeignet ist.
Theoretical investigation on the binary laminar boundary-layer flow along a vaporizing liquid layer at non-adiabatic evaporation
For clarification the physical process in the evaporating part of a film-evaporation combustion-chamber in addition to the adiabatic evaporation the case of a one-sided wet plate in co- and counter-current hot air flow is presented. The boundary-layer equations for both streams are solved simultaneously with an implicit finite-difference method taking into account variable fluid properties. Thereby the similar solutions obtained for the co-current flow are compared with the corresponding similar solutions for the case of the adiabatic evaporation. Contrary to the co-current flow the counter-current flow yields non-similar solutions and the computation of the boundary-layer parameters influenced by the evaporation mass-flow shows, that the model of counter-current flow is best suitable for application in a film-evaporation combustion-chamber.

Bezeichnungen Aj, Bj Abkürzungen in der allg. Differenzen - Cj gleichung (36) - c Massenkonzentration, bezogen auf Gemischmasse - cf Dimensionsloser örtlicher Reibungsbeiwert - cp Spezifische Wärmekapazität - D12 Diffusionskoeffizient - h Enthalpie des Gasgemisches - K1, K2 Abkürzungen in der Gl. (5) - K5, K6 Abkürzungen in der Gl.(22) - L Plattenlänge - M Molmasse - m1 Massenstromdichte, verdunstende Masse je Flächen- und Zeiteinheit - m* Dimensionslose Massenstromdichte, Verdunstungsparameter nach Gl.(32) - m** Örtliche dimensionslose Massenstromdichte nach Gl. (33) - PGr Stellvertretende Größe für die Grenzschicht parameter cf, StT und Stm nach Gl. (34) - p Statischer Druck (=Summe der Partialdrücke) - p1w Sättigungsdruck an der Filmoberfläche - q Wärmestromdichte - r Verdampfungsenthalpie - r 1w * Dimensionslose Verdampfungsenthalpie nachGl.(25) - u Geschwindigkeit in x-Richtung - v Geschwindigkeit in y-Richtung - x Längskoordinate - ¯x Längskoordinate für den Gegenstrom s. Bild 14 - xA Wärmeisolierte Anlaufstrecke s. Bild 14 - x* Dimensionslose Längskoordinate für das Dreipunkt-Differenzenverfahren x*=x/s - y Querkoordinate - y* Normierte Querkoordinate für das Drei punkt-Differenzenverfahren y*=y/s - 1 Dimensionslose Verdrängungsdicke nach Gl.(27) - 2 Dimensionslose Impulsverlustdicke nach Gl.(28) - c Konzentrationsgrenzschichtdicke (y-Wert für =0.99) - s Strömungsgrenzschichtdicke (y-Wert für u/u=0.99) - T Temperaturgrenzschichtdicke (y-Wert für = 0.99) - T Dimensionsloser Wandabstand nach Gl.(37) - Normierte absolute Temperatur (= (T – Tw)/(T – T w) - Wärmeleitfähigkeit - Dynamische Zähigkeit - Kinematische Zähigkeit - Dichte - Schubspannung - Allgemeine abhängige Variable (s. Tabelle 1) Normierte Massenkonzentration (=(c1–c1w/(c1–c1w)) - Nu Nußelt-Zahl (= L(T/yT/y)w/(T–Tw)) - Pr Prandtl-Zahl (=cp/) - Rex Reynolds-Zahl (=ux/) - ReL Reynolds-Zahl (=uL/) - Res Reynolds-Zahl (= us/) - Sc Schmidt-Zahl (=/D12) - Stm Stanton-Zahl des Stoffübergangs nach Gl.(31) - StT Stanton-Zahl des Wärmeübergangs nach Gl.(30) Indizes 0 Bezogen auf Strömung ohne Stoffübergang - 1 Gas 1 (Benzoldampf) - 2 Gas 2 (Luft) - Ungestörter Anströmzustand der Luft - ad Charakteristische Werte des adiabaten Strömungsfalles - Geg Charakteristische Werte des Gegenstroms - Gl Charakteristische Werte des Gleichstroms - j Diskreter Punkt in y-Richtung - k Diskreter Punkt in x-Richtung - w Werte an der Plattenoberfläche - + Werte an der benetzten Plattenoberseite - – Werte an der trockenen Plattenunterseite Auszug aus der von der Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Braunschweig zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Theoretische Untersuchung der laminaren Zweistoffgrenzschichtströmung längs einer benetzten, ebenen Platte bei nichtadiabater Verdunstung des Diplom-Ingenieurs Klaus Pientka. Berichterstatter: Prof. Dr. phil. Dr.-Ing. E.h. H. Schlichting und Prof. Dr.-Ing. D. Hummel. - Die Dissertation wurde am 14 Juni 1976 bei der Technischen Universität eingereicht. Die mündliche Prüfung fand am 23. November 1976 statt.  相似文献   

7.
Zusammenfassung Bei der Beantwortung der Frage nach der Analogie des Wärme- und Stoffaustausches muß man berücksichtigen, daß beide Vorgänge durch den Massenstrom beeinflußt werden. Als Kriterium für die Analogie wurde daher das Verhältnis a*/*: a/ (a*/* mit zu a/ ohne Massenstrom-beeinflussung) definiert, wobei für * eine in der angelsächsischen Literatur übliche Definition verwendet wurde. Dieses Verhältnis ist sowohl nach der einfachen Filmtheorie (ohne Veränderung der Grenzschicht durch den Massenstrom) als auch nach der Grenzschichttheorie berechenbar. Grundsätzlich kann man nach beiden Theorien nur für a/D=1 von einer strengen Analogie sprechen. Die Abweichungen sind jedoch bei der Verdunstung der meisten Lösungsmittel 0,8 < a/D < 3 und bei den erreichbaren Massenströmen (Gastemperatur <250°C) so klein, daß sie innerhalb der Meßgenauigkeit liegen. Es erscheint daher zulässig, mit den berechneten Abweichungen von der Analogie auch bei hier von abweichenden Größen für a/D und größeren Massenströmen das Verhältnis von Wärme- zu Stoffübergangskoeffizienten bei laminaren Grenzschichten zu bestimmen und für Berechnungen zu benutzen. Bei turbulenten Grenzschichten liegen noch nicht genügend Untersuchungen vor, doch scheint die Abweichung von der Analogie noch kleiner als bei laminaren Grenzschichten zu sein.
The analogy of heat- and mass transfer
Considering the analogy of heat and mass transfer it has to be taken into account that both processes are influenced by the mass-flow. As a criterion for the analogy a ratio a*/(3*: a/ was defined (a*/* with, to a/ without a mass-flow influence) with * being used according to a definition common in English literature. This ratio may be calculated by both the simple film theory (without alterations in boundary layer caused by the mass-flow) and the boundary layer theory. In principle, in both theories, only for a/D=1 we can speak of strict analogy. Deviations in the evaporation of most solvents with 0.8 < a/D < 3 and with the attainable mass-flow-rates (gas temperature <250° C) are small enough, however, to fall within the accuracy of measurement. It appears permissable therefore, with deviations to the analogy calculated, for deviating quantities of a/D, and higher mass-flow-rates, to determine the ratio of heat- and mass-transfer coefficients for laminar boundary layers and use it for calculations. For turbulent boundary layers not enough data are available, but it seems that, deviations to the analogy are even smaller than in laminar boundary layers.

Bezeichnungen a Temperaturleitzahl - Cp, cp molare bzw - spez Wärme c=P/RT - D Diffusionskoeffizient - M relative Molmasse - ¯m Massen ström - ¯N Mengenstrom - P Gesamtdruck - P Partialdruck - q Wärme strom - R allgemeine Gaskonstante - T abs Temperatur - u Geschwindigkeit - x Ordinate in Strömungsrichtung - y=p/P Molanteil - z Ordinate senkrecht zur Strömung - Wärmeübergangskoeffizient - Stoffübergangskoeffizient - Grenzschichtdicke - Wärmeleitkoeffizient - v=y / kinematische Zähigkeit - Dichte - u·x Rex=u.x/v Reynoldszahl - Pr=v/a Prandtlzahl - Sc=v/D Schmidtzahl - Nux=·x/v Nusseltzahl - Shx=·x/D Sherwoodzahl Indizes D diffundierender Dampf - G Trägergas - th thermisch - Konz Konzentration - * Größe durch Mengenstrom beeinflußt - , Zustand an der Wand bzw. im Gasstrom - - Mittelwert Prof. Dr.-Ing. U. Grigull zum 60. Geburtstag.  相似文献   

8.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

9.
Zusammenfassung In einer vergleichenden Literaturübersicht zu Umströmung, Druck- bzw. Geschwindigkeitsverteilung sowie Wärme- und Stoffübergang werden bislang vorliegende Angaben zu stumpf angeströmten Kreisscheiben und -Zylindern zusammengefaßt. Wenige und zudem divergierende Ergebnisse zum Wärme- und Stoffübergang machen grundlegende experimentelle und theoretische Untersuchungen notwendig, wie sie in [l, 2] für die Eichung von Stoffübergangsmeßmethoden benötigt werden.Unter Einbeziehung des quer angeströmten Kreiszylinders wird gezeigt, daß genaue Angaben zum Wärme- und Stoffübergang bei zwei- wie dreidimensionalen Staupunktströmungen bislang nur über die Messung möglich sind. Über gemessene Geschwindigkeitsverteilungen berechnete Stoffübergangskoeffizienten werden von der Messung nicht bestätigt. Sie liegen gegenüber dem Experiment zu niedrig.Die Messungen wurden bei Turbulenzintensiten 0,8%Tu6%, Reynolds-Zahlen 2·1035 und Scheibendurchmessern 9,3mmd73,7mm durchgeführt. Der Einfluß der Turbulenz auf den Stoffübergang im Staupunkt von Kreisscheiben kann nur näherungsweise über den Smith-Kuethe-Parameter Tu · Re/100 erfaßt werden. Differenzen zwischen Theorie nach Smith und Kuethe für Tu· Re<5 und Messung lassen sich über die Stabilitätstheorie erklären. Für eine genauere Erfassung des Stoffübergangs muß den unterschiedlichen Transportvorgängen über Turbulenzballen oder Längswirbeln sowie der Struktur der Turbulenz Rechnung getragen werden.
Measuring and computation of local and average mass transfer to disks in cross flow at different turbulence intensities
The results of different publications concerning the flow, pressure and velocity distributions as well as the heat and mass transfer of disks and cylinders in cross flow are compared by a literature review. A few diverging results for heat and mass transfer require new experimental and theoretical approaches. The calibration of recently developed techniques for the determination of mass transfer rates as published in [1, 2] make these investigations expecially necessary. Including the cylinder in cross flow the authors show, that up to now exact data of heat and mass transfer for two- or three-dimensional flow at a forward stagnation region can be obtained by direct measuring only.Mass transfer coefficients computed from measured velocity distributions are not confirmed by the experimental results. Compared to the experimental data they are too low. The measurements were accomplished for turbulence intensities 0.8%Tu6%, Reynolds-numbers 2· 1035 and disk diameters 9.3 mm d 73.7 mm.The influence of the turbulence on the stagnation point mass transfer of disks can be obtained only approximately by the Smith-Kuethe-parameter Tu·Re/100. Differences between theoretical results of Smith and Kuethe and experimental ones for Tu·Re/100<5 may be explained by the stability theory. For a more accurate determination of the mass transfer the different transport mechanisms of the scale of turbulence or the tree-dimensional flow pattern like Taylor-Görtler-vortices as well as the structure of the turbulence itself have to be regarded.

Bezeichnungen a Temperaturleitkoeffizient - Cp Beiwert für den statischen Druck - C2, C3 Gradient der bezogenen Geschwindigkeit U+ am Staupunkt bei ebener, räumlicher Strömung - DA Diffusionskoeffizient von Ammoniak in Luft - d Durchmesser - Fr=Sh/Re Frössling-Zahl für den Stoffübergang - Fr=Nu/Re Frössling-Zahl für den Wärmeübergang - Le=a/DA Lewis-Zahl - L Bezugslänge - M Maschenweite von Turbulenzgittern - Nu=·d/ Nußbelt-Zahl - n Exponent der Prandtl-bzw. Schmidt-Zahl - Pr=/a Prandtl-Zahl - p Druck, Partialdruck - px statischer Druck an der Stelle x am Rand der Grenzschicht - Re=U · d/ Reynolds-Zahl - r Radius - r(x) radiale Distanz von der Rotationsachse eines Körpers zu einem Oberflächenelement - Sc=/DA Schmidt-Zahl - Sh= A ·d/DA Sherwood-Zahl - T absolute Temperatur - Tu Turbulenzintensität (Turbulenzgrad) in% - U Strömungsgeschwindigkeit in x-Richtung am Rand der Grenzschicht - U Hauptströmungsgeschwindigkeit im freien Kanalquerschnitt - U+=U/U bezogene Geschwindigkeit in x-Richtung am Rand der Grenzschicht - u Strömungsgeschwindigkeit in x-Richtung, tangential zur Oberfläche - mittlere turbulente Geschwindig-keitsschwankung in x-Richtung - v Strömungsgeschwindigkeit in y-Richtung, normal zur Oberfläche - x Koordinate in Strömungsrichtung, tangential zur Oberfläche - xG Entfernung vom Turbulenzgitter in Strömungsrichtung - x+ bezogene Länge x/r - y Koordinate normal zur Oberfläche - Wärmeübergangskoeffizient - A Stoffübergangskoeffizient (Ammoniak) - dimensionsloses Temperaturgefälle an der Wand - Keilvariable - Wärmeleitkoeffizient - Wirbelweilenlänge (mm) - kinematische Zähigkeit - transformierte bezogene Länge - A Partialdichte von Ammoniak Indices B mit Korrektur aufgrund der Verengung - m mittel - S bezogen auf die Kreisscheibe - Z bezogen auf den Kreiszylinder Herrn Prof. Dr.-Ing. habil. Josef Ipfelkofer zum 70. Geburtstag am 7. April 1977 gewidmet.  相似文献   

10.
Zusammenfassung Es wurde eine zweidimensionale, aus ebener Wand und Konturwand bestehende Lavaldüse gebaut, um an den Wänden (unterteilt in gut isolierte und einzeln gekühlte Segmente) genaue Wärmeübergangs messungen durchzuführen. Alle Versuchspunkte zeigen bei geringer Streubreite eine eindeutige Abhängigkeit der Stanton-Zahl von einer aus neu entwickelten Temperaturprofilen gewonnenen Differenz aus dimensionslosen Kennzahlen für Dissipation und Druckgradient. Bei gekühlter Grenzschicht und zunehmendem negativen Druckgradienten nimmt in Theorie und Versuch bei geringer Dissipation der Wärmeübergang ab, bei stärkerer Dissipation zu.
Compressible turbulent boundary layer heat transfer with strong favourable pressure gradients (heat transfer in a convergent — Divergent nozzle)
A two-dimensional convergent-divergent nozzle with a plane and a contoured wall was built to perform exact measurements of heat transfer to the walls divided in well insulated single-cooled segments. For all experimental data within a small error-band the Stanton-number definitely depends on a difference of dimensionless numbers for dissipation and pressure gradient found from new developed temperature profiles. Theoretical and experimental results show that in a cooled boundary layer with increasing favourable pressure gradient heat transfer decreases with small dissipation and increases with greater dissipation.

Formelzeichen Wärmeübergangsparameter - cf=w/(·u 2 örtlicher Reibungsbeiwert - cp spezifische Wärmekapazität - d+= u 2 /(cp·Tq) Dissipationsparameter - 1t turbulenter Mischungsweg - m Massenstrom im Windkanal - p Druck - p+= –K/cf 3/2 Druckgradientenparameter - q Wärmestromdichte - r Rückgewinnfaktor - u Geschwindigkeit in Hauptstromrichtung - Schubspannungsgeschwin digkeit - u+=u/u dimensionslose Geschwin digkeit - x Lauflänge an der Wand - y Abstand senkrecht zur Wand - y+=· uy/ dimensionslose y-Koordinate - C Wärmeübergangsbeiwert - Euler-Zahl - Hs Höhe des engsten Quer-Schnitts - K Beschleunigungsparameter - Ma Machzahl - Pr Prandtl-Zahl - Prt turbulente Prandtl-Zahl - R Radius - Reynolds-Zahl - Stanton-Zahl - T absolute Temperatur - Tei Eigentemperatur - Wärmestromdichtetemperatur - T+=T/Tw dimensionslose Temperatur - T*=l/b+ · (1 –T+) dimensionslose Temperatur - ei Wärmeübergangskoeffizient bezogen auf Eigentemperatur - dynamische Zähigkeit - =T – 273,15K Celsius-Temperatur - v kinematische Zähigkeit - Dichte - Schubspannung - Differenz - Wärmeübergangsparameter Indices Freistrom - a Austritt - e Eintritt - k kühlseitige Wand lam laminar - O Gesamt-, Ruhew Wand - x auf Lauflänge x bezogen Auszug aus der vom Fachbereich Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieur genehmigten Dissertation über Wärmeübergang turbulenter kompressibler Grenzschichtströmungen mit starken negativen Druckgradienten (Wärmeübergang in einer Lavaldüse) des Diplom-Ingenieurs W. Winkler. Berichterstatter Prof. Dr.-Ing. U. Grigull und Prof. Dr.-Ing. E. Truckenbrodt. — Die Dissertation wurde am 17.12.1975 bei der Technischen Universität München und am 1.4.1976 durch deren Fachbereich Maschinenwesen angenommen. Tag der Promotion 13.5.1976früher: Lehrstuhl A für Thermodynamik Technische Universität München  相似文献   

11.
Zusammenfassung Der lokale Stoffübergang wurde in Abhängigkeit von der Meßlänge, dem Startort und der Zulaufhöhe gemessen. Der Gültigkeitsbereich der Theorie von Nusselt wird ermittelt. Die Reynolds-Zahl nahm Werte zwischen 3,86 und 2496 an. Die örtlich wirkende Hydrodynamik ist entscheidend für das Anwachsen der örtlichen Sherwood-Zahl. Die Genauigkeit aller Versuchsergebnisse kann auf ± 5% abgeschätzt werden.
Investigation of the local mass transfer of a laminar and turbulent falling liquid film
The local mass transfer was measured as a function of the measuring length, the starting point and the liquid height above the ring-slot. The range of the Reynolds number was 3,86 Re 2496. The validity of the Nusselt theory and the range of it is shown. The local hydrodynamic is the most important factor of the increase of the local Sherwood number. The accuracy of the measurements is ± 5%.

Bezeichnungen a Temperaturleitfähigkeit m2/s=/(cp) - c Konzentration, c=¯c + c kmol/m3 - ci0 Konzentration im Flüssigkeitskern kmol/m3 - D Diffusionskoeffizient m2/s - EL-NR Elektrodennummer - Fa Faraday-Konstante A s/kgäq=96,5·106 - g Erdbeschleunigung m/s2 - iG Grenzstromdichte A/m2 - u Geschwindigkeit in x-Richtung, u= + u - U Umfang des Rohres m - v Geschwindigkeit in y-Rich- m/stung, v=¯v + v - V* Volumenstrom m3/s - x Lauflänge, Koordinate in m Strömungsrichtung - xM Meßlänge für den Stoff-Übergang m - xST Startort für den Stoff-Übergang m - y Wegkoordinate senkrecht zur Rohroberfläche m - z Wertigkeit der Elektro-denreaktion kgäq/kmol - ZH Zulaufhöhe m - Wärmeübergangskoeffizient W/m2C - Stoffübergangskoeffizient m/s - Filmdicke m - Wärmeleitfähigkeit W/(mC) - kinematische Viskosität m2/s - Re=u/=V*/U Reynolds-Zahl - Pr=/a=cp/ Prandtl-Zahl - Sc=/D Schmidt-Zahl - Nu= / Nusselt-Zahl - Sh= /D Sherwood-Zahl - SHL lokale Sherwood-Zahl - SHM mittlere Sherwood-Zahl - - zeitlich gemittelt - örtlich gemittelt Die Durchführung der Arbeit am Institut für Verfahrens — und Kältetechnik der ETH Zürich bei Prof. Dr. P. Grassmann wurde ermöglicht durch Zuschüsse der Kommission zur Förderung der wissenschaftlichen Forschung und meiner Eltern.  相似文献   

12.
Zusammenfassung Krischer hat die kapillare Flüssigkeitsbewegung als Potentialströmung beschrieben, deren Ursache ein Feuchtegefälle ist und führte als Stoffeigenschaft die Flüssigkeitsleitzahl als Funktion des Feuchtegehaltes ein. Trennt man durch einen modifizierten Ansatz Kapillar- und Reibungskräfte, so erhält man Kapillarfunktionen, die für den Fall der stationären Strömung bei horizontaler Flüssigkeitsbewegung oder bei lotrechter Flüssigkeitsbewegung unter Vernachlässigung der Schwerkraft in der Krischerschen Flüssigkeitsleitzahl (Kapillarleitkoeffizient) zusammengefaßt werden können.Diese Kapillarfunktionen für Wasser wurden von Quarzsand, Ziegel, Kalksandstein, Gasbeton und Bimsbeton ermittelt und der Kapillarleitkoeffizient als Funktion des Feuchtegehaltes für den Befeuchtungsvorgang angegeben. Zur experimentellen Bestimmung des Feuchtegehaltes war das Durchstrahlungsverfahren mit Gammastrahlen gewählt worden, um den volumenbezogenen Feuchtegehalt während eines quasistationären Vorganges der kapillaren Flüssigkeitsbewegung in Abhängigkeit von Zeit und Ort ohne Störung des Vorganges ermitteln zu können.
Results of investigations on the capillary motion of moisture in building materials
Krischer described the capillary motion of moisture as a water transfer proportional to the gradient of water content by volume, and defined a coefficient of capillary conductivity as a function of moisture content. Equations of general validity, however, can be developed by separation in terms for capillary and gravity forces and capillary resistance. These capillary functions can be transferred in the coefficient for processes with horizontal motion and for those cases where gravity does not have any impact on the motion in small capillary pore spaces.The capillary functions and the coefficients of capillary conductivity for quasi-steady processes of humidification were determined of quartz sand, brick, sandlime brick, cellular concrete and pumice concrete. The temporally and locally changing moisture content during capillary rising tests was measured non-destructively by means of the attenuation effect of penetrating gamma rays.

Formelzeichen F Stoffquerschnitt - H() feuchtigkeitsabhängige maximale kapillare Steighöhe - Hmax maximale kapillare Steighöhe beim maximalen Feuchtegehalt - I0 Intensität der auffallenden Gammastrahlung - I Intensität der durchfallenden Gammastrahlung - R() feuchtigkeitsabhängiger kapillarer Reibungskoeffizient - Rmax kapillarer Reibungskoeffizient beim maximalen Feuchtegehalt - V Volumstrom - h kapillare Steighöhe - qS Volumanteil des Feststoffes - qW Volumanteil des Wassers - qL Volumanteil der Luft - s Weglänge - t Zeit - x Schichtdicke - y Impulszahl - Neigungswinkel gegen die Lotrechte - statistischer Fehler bei der Impulsmessung - Kapillarleitkoeffizient bzw. Flüssigkeitsleitzahl na ch Krischer - Schwächungskoeffizient für Gammastrahlen - Dichte - / Massenschwächungskoeffizient - volumenbezogener Feuchtegehalt - max maximaler volumenbezogener Feuchtgehalt - S Schwächungskoeffizient des Feststoffes - W Schwächungskoeffizient des Wassers - L Schwächungskoeffizient der Luft Herrn Professor Dr.-Ing. H. Glaser, Stuttgart, zum 70. Geburtstag gewidmet.Die Untersuchungen erfolgten mit Mitteln der AIF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V., Köln). Der Aufbau der Versuchs-anordnung und die Gammastrahlungsmessungen mit Auswertung wurden von H. Perk durchgeföhrt, der zugleich der för den Strahlenschutz Verantwortliche des Instituts im Sinne des § 20 der I. Strahlenschutzverordnung ist.  相似文献   

13.
Zusammenfassung Es werden Messungen des Wärmeübergangs bei freier Konvektion und Filmsieden an einem elektrisch beheizten Platindraht (d=0, 1 mm) in Wasser in der Nähe des kritischen Punktes angegeben und zur Überprüfung eines theoretischen Grenzschichtmodells herangezogen.Für den Wärmeübergang bei freier Konvektion wird ein vereinfachtes Berechnungsverfahren abgeleitet, das mit zahlreichen Versuchen in Wasser und Kohlendioxid überprüft wird. Bei Filmsieden wird auf die Grenzen einer Darstellung von Versuchsergebnissen in Nusselt-Reyleigh-Diagrammen hingewiesen und eine vereinfachte Berechnungsmethode der Grundkurve des Wärmeübergangs angegeben.
Free convection and film boiling heat transfer in the critical region of water and carbon dioxide
Measurements of free convection and boiling from an electrically heated platinum wire (d=0,1 mm) in water near its critical state are given and taken for checking a theoretical boundary layer modell.For heat transfer at free convection, a simplified calculation method is derived which is tested by several measurements in water and carbon dioxide. For film boiling, the limits of a representation of experimental results in Nusselt-Rayleigh-diagrams are pointed out. A simplified method of calculating the basic curve of film boiling heat transfer is given.

Bezeichnungen A Auftriebsglied - Bi Konstanten - Cm Konstante - Cp spezifische Wärme bei konstantem Druck - d Zylinderdurchmesser - g Erdbeschleunigung - G() Funktion der affinen Verzerrung - G intergraler Mittelwert von G() - h Plattenhöhe - H spezifische Enthalpie - Hfd spezifische Verdampfungswärme - L charakteristische Länge - n Koordinate normal zur Wand - Nu Nußelt-Zahl - P Druck - Pr Prandtl-Zahl - q Wärmestromdichte - Ra Rayleigr-Zahl - S beliebiger Stoffwert - t Celsius-Temperatur - T absolute Temperatur - Wärmeübergangskoeffizient - isobarer Ausdehnungskoeffizient - T Temperaturdifferent T — Tu - Quotient aus Temperaturdifferenzen - Wärmeleitfähigkeit - kinematische Zähigkeit - dimensionslose Koordinate in Wandrichtung - Dichte - dimensionslose Grundgröße des Wärmeübergangs Indizes b Wert bei Bezugszustand - f Zustand der gesättigten Flüssigkeit - korr korrigierter Wert für kleine Durchmesser - L Bezug auf die charakteristische Länge - mod modifizierte Kenngröße - Pl. vertikale Platte - psk Wert im pseudokritischen Zustand - s Sättigungszustand - u Umgebungszustand - w Wert an der Wand - Zyl. horizontaler Zylinder - o Wert aus den Theorien mit unveränderlichen Stoffwerten - Grenzschichtlösung (Gr beim horiz. Zyl.) Auszug aus der von der Fakultät Maschinenwesen und Elektrotechnik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Wärmeübergang bei freier Konvektion und Filmsieden — Allgemeines theoretisches Berechnungsverfahren und experimentelle Überprüfung im kritischen Gebiet des Diplom-Ingenieurs Michael Reimann. Berichterstatter: Prof. Dr.-Ing. U. Grigull und Prof. Dr. rer. nat. E. Winter. Die Dissertation wurde am 15. Juli 1974 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen und Elektrotechnik am 6 November 1974 angenommen. Tag der Promotion 8. November 1974.Institut A für Thermodynamik Technische Universität München  相似文献   

14.
Zusammenfassung Experimentelle Ergebnisse zum überkritischen Wärmeübergang weisen für den Zustandsbereich nahe dem kritischen Punkt zum Teil große Abweichungen von der für unterkritische Fluide bekannten Abhängigkeit des Wärmeübergangskoeffizienten von der Wärmestromdichte auf. Am Beispiel des Kältemittels RC318 (C4F8) wird gezeigt, daß auch diese Ergebnisse mit den bekannten Beziehungen zwischen der Nußelt-, der Grashof- und der Prandtl-Zahl beschrieben werden können, wenn der thermische Ausdehnungskoeffizient und die spezifische Wärme in Gr bzw. Pr durch Differenzenquotienten ersetzt und zwei zusätzliche Parameter zur Beschreibung der Dichteänderung innerhalb der beheizten Fluidzone eingeführt werden. Da ein Teil der in den Kennzahlen benötigten Stoffwerte von RC318 im interessierenden Zustandsbereich nicht bekannt ist, werden die fehlenden Stoffwerte mit Hilfe des allgemeinen Korrespondenzprinzips berechnet.
Calculation of free convective heat transfer near the critical state
For certain conditions free convective heat transfer from horizontal tubes to fluids near the critical state differs widely from the well-known dependency of heat transfer coefficient from heat flux. It is shown that experiments with refrigerant RC318 (C4F8) even for these conditions can be described by one of the often applied relationships between Nusselt and Rayleigh numbers, if the special form of density variation within the heated region of the fluid is taken into account. Most of the thermophysical properties of RC318 being unknown near the critical state, thermodynamic similarity considerations are used to calculate these data.

Formelzeichen F Korrekturfaktor - R individuelle Gaskonstante - T Temperatur - Z Realfaktor - Gr, Nu, Pr Kennzahlen - a Temperaturleitzahl - cv, Cp spezifische Wärme - d Rohrdurchmesser - g Erdbeschleunigung - h spezifische Enthalpie - m Molekülmasse - p Druck - q Wärmestromdichte - u innere Energie - v spezifisches Volumen - Wärmeübergangskoeffizient - k Riedel-Parameter - thermischer Ausdehnungskoeffizient - Realanteil - Differenz zwischen einer Zustandsgröße des Fluids an der Heizwand und außerhalb der beheizten Zone - Asymmetrieparameter - Viskosität, dynamische - Wärmeleitzahl - Viskosität, kinematische - Dichte Indizes-hochgestellt normierte Größe - * auf den Wert am kritischen Punkt normierte Größe - 0 im Zustand des idealen Gases Indizes-tiefgestellt B, + Bezugswert - f Fluid außerhalb der beheizten Zone - k am kritischen Punkt - W an der Wand Herrn Professor Dr.-Ing. H. Glaser, Stuttgart, zum 70. Geburtstag gewidmet.Die Autoren danken Herrn Prof. Dr. K. Bier für die unterstützung der Arbeit und für wertvolle Diskussionsbeiträge.  相似文献   

15.
A study of the transient one-dimensional ablation of a PTFE-layer heated by a constant heat flux at the surface and cooled by finite heat transfer at the back is performed using a previously presented analytical model. The influences of various parameters upon the course of ablation are investigated and some limiting cases are discussed. The numerical solution for the quasi-steady ablation is presented by graphs, which are also approximated by correlations for the computation of the coupled boundary layer and PTFE-ablator.
Instationäre und quasi-stationäre Ablation von PTFE-Schichten
Zusammenfassung Die instationäre, eindimensionale Ablation einer PTFE-Schicht wird untersucht, der ein konstanter Wärmestrom an der Oberfläche zugeführt und ein Kühlstrom durch endlichen Wärmeübergang an der Rückseite abgeführt wird. Dabei wird ein analytisches Modell zugrundegelegt, über das kürzlich berichtet wurde, und verschiedene Einflüsse auf den Ablationsverlauf betrachtet sowie Grenzfälle diskutiert. Die numerische Lösung für quasistationäre Ablation kann Diagrammen entnommen werden. Außerdem werden hierfür Korrelationen angegeben für die simultane Berechnung des PTFE-Ablators mit einer Grenzschicht.

Nomenclature a thermal diffusivity - c polymer mass fraction: density ratio of the decomposing and the undecomposed material - k coefficient of heat transmission - m ablation rate (ablating mass flux) - q heat flux to the surface - Q dimensionless heat flux - t time - T temperature - x coordinate - xO initial layer thickness - y1 (x-)/(-), transformed coordinate - y2 (x-)/(-), transformed coordinate - penetration bond - phase interface - thermal conductivity of crystalline PTFE at the melting point - layer thickness Indices k coolant - at the phase interface (melting point) - at the surface  相似文献   

16.
Zusammenfassung Die Strömung und der Stofftransport in der Umgebung von Platten mit chemischer Oberflächenreaktion lassen sich durch Differentialgleichungen zuverlässig beschreiben. Deren vollständige Lösung konnte ohne vereinfachende Annahmen mit Hilfe theoretisch-numerischer Methoden erzielt werden. Dadurch erhält man Einblick in die tatsächlichen Transportvorgänge. Einige wichtige Ergebnisse werden erörtert. Insbesondere wird ein umfassendes Gesetz für den Stoffübergang mitgeteilt, das theoretisch und experimentell einwandfrei gesichert ist. Die Wiedergabe der bekannten sowie der neuen Daten ist gut. Sein Gültigkeitsbereich ist angegeben. Das neue Gesetz enthält neben anderen Grenzgesetzen auch das auf der Grundlage der GrenzschichtHypothese aufgestellte Gesetz.
Mass transfer with chemical surface reaction on flat plates in flow
The flow field and mass transfer from flat plates with chemical surface reaction can be described by means of differential equations. Their solutions have been obtained numerically without any simplifications. This report presents some of the more important results obtained, which give insight into the true transport phenomena.A comprehensive mass transfer law has been developed, that has a wide range of validity. It is in good agreement with all available experimental and theoretical data. The new mass transfer equation includes the special case of boundary layer law besides other special laws that describe mass transfer in limited regions of relevant parameters.

Formelzeichen cA örtliche Moldichte der reagierenden Komponente A - cAw Wert von cA an der Plattenoberfläche - c Funktion nach Gl. (28) - D Diffusionskoeffizient - fp Funktion nach Gl.(2) - k Funktion nach Gl.(27) - kw Reaktionsgeschwindigkeitskonstante - L Länge der Platte - n Reaktionsordnung - nA Molstromdichte der diffundierenden Komponente A - p Funktion nach Gl.(29) - rA Reaktionsstromdichte der reagierenden Komponente A - Shx,Sh örtliche und mittlere Sherwood-Zahl - w Anströmgeschwindigkeit des Fluidgemisches - wx, w x * absolute und bezogene örtliche Längsgeschwindigkeit - wy, w y * absolute und bezogene örtliche Quergeschwindigkeit - x, x* absolute und bezogene Längskoordinate - y, y* absolute und bezogene Querkoordinate - x, örtlicher und mittlerer Stoffübergangskoeffizien - dynamische Viskosität des Fluidgemisches - Massendichte des Fluidgemisches - Da kwLc n–1 /2D Damköhler-Zahl - Re wL//gr Reynolds-Zahl - Rekr=5 · 105 kritischer Wert der Reynolds-Rekr=5 · 105 Zahl - Sc //D Schmidt-Zahl - cA/cA bezogene örtliche Konzentration - w Wert von an der Plattenoberfläche Indizes A diffundierende und reagierende Komponente - w an der Plattenoberfläche - x in Längsrichtung - y in Querrichtung - in sehr großer Entfernung von der Platte  相似文献   

17.
Zusammenfassung Der Wärmeleitwiderstand eines Kondensattropfens wird durch die Tropfengeometrie und das Zusammenspiel zwischen dem Transport des kondensierenden Dampfes und der Wärmeleitung im Inneren des Tropfens bestimmt. Für einen liegenden Tropfen auf horizontaler Unterlage wird die Form des Meridians aus dem Gleichgewicht zwischen Schwerkraft und Oberflächenkraft berechnet. An der freien Oberfläche des Tropfens werden die Abweichungen vom thermodynamischen Gleichgewicht durch die Wärmeübergangszahl p des Phasenwechsels berücksichtigt. Dadurch vermeidet man das Auftreten einer physikalisch sinnlosen Singularität an der Basisfläche des Tropfens. An der Wand wird konstante Temperatur angenommen und das resultierende Wärmeleitungsproblem für verschiedene Kombinationen der maßgebenden Kennzahlen durch ein Differenzenverfahren gelöst. Die Ergebnisse gelten für abgeplattete Tropfen mit beliebigen Randwinkeln und gehen somit über die Lösung von Umur und Griffith [1] für den Halbkugeltropfen hinaus.
The thermal resistance of a drop of condensate
The resistance of heat conduction in a drop of condensate is governed by the geometry of the drop and the interaction between mass transport of condensating vapour and heat conduction in the interior of the drop. We calculate the shape of the meridian of a drop lying on a horizontal plane from the equilibrium of gravity with surface force. The deviation of thermodynamic equilibrium at the free surface of the drop is considered by the introduction of the heat transfer coefficient of phase change. Thus we avoid a physically absurd singularity at the basis of the drop. Constant wall temperature will be suggested. The resulting problem of heat conduction is solved for a set of different combinations of the controlling dimensionless coefficients by means of a finite difference method. The results are valid for flat drops of arbitrary contact angles and thus supersede the solution of Umur and Griffith [1] for the hemispherical drop.

Bezeichnungen a Laplace-Kennzahl - f () Faktor nach Fatica und Katz, Gl. (2) - g Fallbeschleunigung - m Massenstromdichte des kondensierenden Dampfes - n innere Normale der Tropfenoberfläche - p Druck - r radiale Koordinate - r Radius eines stabilen Tropfenkeims - t Temperatur an einem Punkt im Inneren des Tropfens - tD Dampftemperatur - tF Temperatur an der Phasengrenze - tW Wandtemperatur - t treibende Temperaturdifferenz für die Kondensation - u dimensionslose Temperatur - z vertikale Koordinate - D Durchmesser der Tropfenbasis - H Verdampfungsenthalpie - Pm m-tes Legendre-Polynom 1. Art - Q Wärmestrom durch einen Tropfen - R Radius eines Tropfens mit der Form einer Kugelkappe Gaskonstante des Dampfes - R1, R2 Hauptkrümmungsradien an einem Punkt der Tropfenoberfläche - R0 Krümmungsradius im Tropfenscheitel - T Temperatur des Dampfes - W Wärmeleitwiderstand eines Kondensattropfens - a Wärmeübergangszahl nach Fatica und Katz - ap Wärmeübergangszahl des Phasenwechsels - dimensionslose vertikale Koordinate - Randwinkel - Wärmeleitfähigkeit des Kondensates - dimensionslose radiale Koordinate - 0 dimensionsloser Radius der Tropfenbasis - Dichte des Kondensates - Oberflächenspannung, Kondensationskoeffizient - Kontingenzwinkel - dimensionslose innere Normale der Tropfenoberfläche  相似文献   

18.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

19.
Zusammenfassung Das Problem des Wärmeübergangs bei turbulenter Strömung in konzentrischen Ringspalten wird für den dreidimensionalen Fall theoretisch gelöst, wobei die Wandwärmestromdichte sowohl in azimutaler als auch in axialer Richtung beliebig variiert. Die Lösung der Energiegleichung erfolgt mit der klassischen Methode der Superposition und Trennung der Variablen, wobei das dabei auftretende Sturm-Liouvillesche Eigenwertproblem numerisch gelöst wird. Zur Lösung werden Verteilungen für die Geschwindigkeit und anisotropen turbulenten Austauschgrößen verwendet, die mit dem phänomenlogischen Turbulenzmodell von Ramm berechnet wurden. Ergebnisse werden über einen weiten Bereich der Reynolds-Zahl (104 Re 106), der Prandtl-Zahl (0 Pr 100) und für verschiedene Radienverhältnisse diskutiert.
Turbulent forced convection heat transfer in annuli with arbitrarily varying boundary conditions of second kind
The problem of turbulent flow heat transfer in concentric annuli is analysed for the general threedimensional case in which the wall heat flux varies arbitrarily in both the circumferential and axial directions. The energy equation is solved using the classical method of superposition and separating variables, where the resulting Sturm-Liouville problem are evaluated numerically. The solution is based on velocity profiles and anisotropic thermal turbulent transport properties evaluated by Ramm's phenomenological turbulence model. Results are discussed over a wide range of Reynolds number (104 Re 106), Prandtl number (0 Pr 100) and radius ratio.

Bezeichnungen a,b Fourierkoeffizienten - B geometrische Funktion, [s(1-r) + r]/(1–s) - C Koeffizienten - D hydraulischer Durchmesser, 2(r2 – r1) - E Energietransportfunktion - f axiale Wärmestromdichteverteilung - F azimutale Wärmestromdichteverteilung - g radiale Temperaturfunktion - l Kanallänge - L dimensionslose Kanallänge, 1/D - M axialer Temperaturgradient im thermisch ausgebildeten Bereich - n harmonischer Parameter - Nu Nusselt-Zahl - Pe Péclet-Zahl - Pr Prandtl-Zahl - q Wärmestromdichte - Q dimensionslose Wärmestromdichte, q/q0 - r dimensionslose radiale Koordinate, (R-r1)/(r2-r1) - r1,r2 innerer und äußerer Ringspaltradius - R radiale Koordinate - Re Reynolds-Zahl - s Ringspaltverhältnis, r1/r2 - T dimensionslose Temperatur, 2· · (-E/(D· q0 - u dimensionslose Geschwindigkeit, U/Um - U Geschwindigkeit - x dimensionslose axiale Koordinate, X/D - X axiale Koordinate - Wärmeübergangskoeffizient - un modifizierter Eigenwert - halber Segmentwinkel - turbulente Austauschgröe - Temperatur - dimensionslose Temperaturdifferenz, T - Tm - Wärmeleitfähigkeit - un Eigenwerte - kinematische Viskosität - azimutale Koordinate - Eigenfunktionen Indizes e thermischer Einlauf - E Eintritt bei x=0 - H Wärme - i Bedingung an der i-ten benetzten Oberfläche (i=1 – Innenrohr, i=2 - Außenrohr) - j Bedingung, wenn nur an der j-ten Oberfläche des Ringspaltes die Wärme übertragen wird (j=1,2) - ij Bedingung an der i-ten Oberfläche, wenn nur an der j-ten Oberfläche des Ringspaltes die Wärme übertragen wird (ij=11, 12, 22, 21) - m mittel - n Ordnung der Harmonischen - r radiale Richtung - u Ordnung des Eigenwertproblems - azimutale Richtung - 0 umfangskonstant - thermisch ausgebildet  相似文献   

20.
Zusammenfassung Für ein im Durchlauf betriebenes System bestehend aus einem Fluß (Vorfluter) und den angeschlossenen Kläranlagen wird eine Methode zur Bestimmung der Vorfluterbelastung durch die eingeleiteten Klärwässer angegeben. Die Methode erfaßt mit Rücksicht auf die Anwendung des Verursacherprinzips im Gewässerschutz die Belastung durch jede Kläranlage für sich, und zwar in Abhängigkeit von der Wasserführung, den Emissionsraten der betreffenden Kläranlage und dem Selbstreinigungsvermögen von den organischen Stoffen aus der betreffenden Kläranlage. Die abhängigen Veränderlichen sind mit der Fließgeschwindigkeit gewichtete Mittelwerte von Schmutzstoffdichten über den Vorfluterquerschnitt. Im Falle konstanter Vorflutertemperatur und zeitunabhängiger Struktur der Klärwässer ergeben sich beispielsweise für die abhängigen Veränderlichen einfache analytische Darstellungen, welche sich als spezielle Formen des -Theorems erweisen. Es wird gezeigt, bei einem unendlich langen Vorfluter mit konstantem Volumenstrom stromabwärts der Klärwassereinleitungen stimmen die erwähnten gewichteten Mittelwerte mit den entsprechenden ungewichteten stromabwärts der Klärwassereinleitungen überein. Die entwickelte Methode kann leicht erweitert werden, um den Sauerstoffschwund im Vorfluter durch jede Kläranlage für sich zu bestimmen.
Fluid mechanical aspects of river pollution by effluents from waste treatment plants
The pollution of a river by effluent inflows from waste treatment plants is modeled under steady-state conditions. With respect to modern policies of environmental protection the method describes the river pollution by each plant separately, depending on the flow conditions, the emission rates of the plant and the microbiological decomposition of the biodegradable matter from the plant. Each dependent variable is a weighted cross-sectional mean of a density of organic matter. If the water temperature is constant and the composition of each effluent is independent of time the method gives simple analytic expressions for the dependent variables, which prove to be special versions of the -theorem. It is shown for an infinitely long river of constant volume rate of flow downstream of the effluent inflows: the weighted means mentioned agree with the corresponding nonweighted downstream of the effluent inflows. The present paper can easily the extended to determine the oxygen deficit in the river due to each plant.

Bezeichnungen a Anzahl der Kläranlagen - D(tb) Kennzahl, Einführung in 4.3 - eA Emissionsrate der abbaubaren or ganischen Verschmutzung aus der -ten Kläranlage - eU Emissionsrate der nichtabbaubaren organischen Verschmutzung aus der -ten Kläranlage - Vorfluterquerschnitt, Einführung in Gl. (4) - F Flächeninhalt von - dF Betrag eines Flächenelements, Einführung in Gl. (6) - JA Diffusionsstromdichten, Einführung in Gl. (2) bzw. Gl. (3) - L Anzahl der Stromstrecken - M Gesamtmasse der abbaubaren or- ganischen Verschmutzung in den N Teilchen, Einführung in Gl. (17) - N Anzahl der verschmutzten Flußwasserteilchen, welche die -te Nahfeldvermischungszone während des Zeitintervalles ta tb für immer verlassen - P(x, t, x, tc) Teilchendichte, Einführung in Gl. (11) und Gl.(12) - Q Selbstreinigungsvermögen, Einführung in Gl.(26) - t Zeitpunkt, Einführung in Gl.(11) - t, tb Intervallgrenzen, Einführung in 4.1 - tc Zeitpunkt, Einführung in Gl.(11) - t Zeitdifferenz, Einführung im Anschluß an Gl.(10) - t* charakteristische Zeit, Einführung in 4.3 - Strömungsgeschwindigkeit Komponente von ¯b in Richtung der zu Tal weisenden Oberflächennormalen eines Vorfluterquerschnitts, Einführung in Gl. (5) und Gl. (6) - Volumenstrom, Einführung in Gl. (7) - x Ortsvektor - x Ortsvektor eines bestimmten markierten Teilchens zur Zeit tc, Einführung in Gl.(11) - x längs der Stromachse gemessene Längenkoordinate - x x-Koordinate des Vorfluterquerschnitts durch x - x,x+1 x-Koordinaten der Vorfluterquerschnitte, welche die -te Stromstrecke stromaufwärts bzw. stromabwärts begrenzen. Einführung in 4.2. - transformierte Variable, Einführung in Gl.(65) - Zeitvariable - (tb) Kennzahl, Einführung in 4.3. - Masse der abbaubaren organischen Verschmutzung in dem markierten Teilchen, Einführung in Gl.(14) - , Integrationsvariablen, Einführung in Gl.(38) bzw. Gl.(28) - A durch die -te Kläranlage bedingte Dichte der abbaubaren organischen Verschmutzung - U durch die -te Kläranlage bedingte Dichte der nichtabbaubaren organischen Verschmutzung - Mittelwerte von bzw· , Einführung in Gl.(31) bzw. Gl.(8) - m -Wert zu einem Maximum, Einführung in Gl.(31) - Verhältnis zweier Mittelwerte, Einführung in Gl.(64) - stochastischer Mittelwert einer Zufallsgröße Y - Y Schwankung einer Zufallsgröße Y um den stochastisehen Mittelwert - Mittlung über den Vorfluterquerschnitt Der saubere Vorfluter sei definiert durch Standardwerte für Mindestanforderungen an die Flußwasserqualität. Vorschläge für solche Standardwerte werden in jüngster Zeit unter Berücksichtigung des Umweltschutzes ausführlich diskutiert ([1]; [2], S.- K 13 -).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号