首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Heck reactions of cyclic olefins, the products usually have aryl groups that end up at the allylic and/or homoallylic position. We herein report new selectivity that adds aryl groups to the vinylic position. Cyclic olefins of various ring size worked well. The desired isomers were produced by palladium–hydride‐catalyzed isomerization of the initial products. Thus, a specific catalyst must be used so that it can perform two jobs under one set of reaction conditions.  相似文献   

2.
A new efficient protocol for the nickel-catalyzed Heck reaction of aryl triflates with vinyl ethers is presented. Mild reaction conditions that equal those of the corresponding palladium-catalyzed Heck reaction are applied, representing a practical and more sustainable alternative to the conventional regioselective arylation of vinyl ethers. A catalytic system comprised of Ni(COD)(2) and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) in combination with the tertiary amine Cy(2)NMe proved effective in the olefination of a wide range of aryl triflates. Both electron-deficient and electron-rich arenes proved compatible, and the corresponding aryl methyl ketone could be secured after hydrolysis in yields approaching quantitative. Good functional group tolerance was observed matching the characteristics of the analogous Pd-catalyzed Heck reaction. The high levels of catalytic activity were explained by the intermediacy of a cationic nickel(II) complex potentially responsible for the successive β-hydride elimination and base promoted catalyst regeneration. Although these elementary reactions are normally considered challenging, DFT calculations suggested this pathway to be favorable under the applied reaction conditions.  相似文献   

3.
We report a protocol for the hydroacylation of vinylphenols with aryl, alkenyl, and alkyl aldehydes to form branched products with high selectivity. This cross‐coupling yields α‐aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of regioselectivity for the formation of the branched products were observed. We propose that aldehyde decarbonylation is avoided by the use of an anionic directing group on the alkene and a diphosphine ligand with a small bite angle.  相似文献   

4.
Electrospray ionization mass spectrometry (ESI-MS) was used as a means to directly identify catalytic cationic organopalladium species in ligand-controlled Heck reactions involving electron-rich olefins and different Pd-sources. In these high-temperature Heck arylations, the oxidative addition intermediates were observed as bidentate ligand chelated cationic aryl palladium species, suggesting that the used ligand attaches to the metal center at the very beginning of the catalytic cycle. This was also in agreement with the obtained regioisomeric profile of the isolated products. The investigation supports the standard Pd(0)/Pd(II) Heck mechanism and provides further insight regarding the conceivable composition of fundamental Pd(II) intermediates in an ongoing Heck reaction.  相似文献   

5.
Asymmetric reductive Heck reaction of aryl halides is realized in high stereoselectivity. Hydrogen‐bond donors, trialkylammonium salts in a glycol solvent, were used to promote halide dissociation from neutral arylpalladium complexes to access cationic, stereoselective pathways.  相似文献   

6.
A nickel‐catalyzed asymmetric reductive Heck reaction of aryl chlorides has been developed that affords substituted indolines with high enantioselectivity. Manganese powder is used as the terminal reductant with water as a proton source. Mechanistically, it is distinct from the palladium‐catalyzed process in that the nickel–carbon bond is converted into a C−H bond to release the product through protonation instead of hydride donation followed by C−H reductive elimination on Pd.  相似文献   

7.
Heck reaction catalyzed by PD-modified zeolites.   总被引:2,自引:0,他引:2  
[Pd]-exchanged NaY zeolites have been prepared, characterized, and applied for the first time for catalytic carbon-carbon coupling reactions. The catalysts exhibit a high activity and selectivity toward the Heck reaction of aryl bromides with olefins for small palladium concentrations (< or =0.1 mol % of Pd). The catalysts can easily be separated from the reaction mixture and reused after washing without loss in activity. No limitation to the diffusion of adducts in the zeolite cages was observed (for linear alkenes). The electronic nature of the aryl bromides and the olefins has a dominating effect on the reaction yield and selectivity. The heterogeneous catalysts quantitatively convert all types of all aryl bromide (complete conversion of bromobenzene within 30 min) and activated aryl chlorides under standard reaction conditions. Product form selectivity is observed in the Heck reaction with cyclic olefins.  相似文献   

8.
Metal hydride catalyzed hydrocarbonation reactions of alkenes are an efficient approach to construct new carbon–carbon bonds from readily available alkenes. However, the regioselectivity of hydrocarbonation remains challenging to be controlled. In nickel hydride (NiH) catalyzed hydrocarbonation, linear selectivity is most often obtained because of the relative stability of the linear Ni–alkyl intermediate over its branched counterpart. Herein, we show that the boronic pinacol ester (Bpin) group directs a Ni‐catalyzed hydrocarbonation to occur at its adjacent carbon center, resulting in formal branch selectivity. Both alkyl and aryl halides can be used as electrophiles in this hydrocarbonation, providing access to a wide range of secondary alkyl Bpin derivatives, which are valuable building blocks in synthetic chemistry. The utility of the method is demonstrated by the late‐stage functionalization of natural products and drug molecules, the synthesis of an anticancer agent, and iterative syntheses.  相似文献   

9.
In intermolecular Heck reactions of styrene and vinylarenes, the aryl and vinyl groups routinely insert at the β position. However, selective insertion at the α position has been very rare. Herein, we provide a missing piece in the palette of Heck reaction, which gave >20:1 α selectivity. The key to our success is a new ferrocene 1,1′‐bisphosphane (dnpf) that carries 1‐naphthyl groups. Our mechanistic studies revealed that the high α selectivity is partly attributable to the steric effect of dnpf. The rigid and bulky 1‐naphthyl groups of dnpf sterically disfavor β insertion.  相似文献   

10.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   

11.
The palladium‐catalyzed Heck reaction is a well‐known, Nobel Prize winning transformation for producing alkenes. Unlike the alkenyl and aryl variants of the Heck reaction, the alkyl‐Heck reaction is still underdeveloped owing to the competitive side reactions of alkyl–palladium species. Herein, we describe the development of a deaminative alkyl‐Heck‐type reaction that proceeds through C?N bond activation by visible‐light photoredox catalysis. A variety of aliphatic primary amines were found to be efficient starting materials for this new process, affording the corresponding alkene products in good yields under mild reaction conditions. Moreover, this strategy was successfully applied to deaminative carbonylative alkyl‐Heck‐type reactions.  相似文献   

12.
Highly efficient palladium-catalyzed Heck coupling of aryl nonaflates with electron-rich vinyl ethers, and enamides is described. These reactions afforded exclusively the branched products in good yields. The results indicated that aryl nonaflates are effective alternative to the frequently employed aryl triflates.  相似文献   

13.
Palladium-catalyzed regioselective Heck arylation of the electron-rich olefins, vinyl ethers 1a-d, enamides 1e-g, and allyltrimethylsilane 1h, has been accomplished in imidazolium ionic liquids with a wide range of aryl bromides and iodides instead of the commonly used, but commercially unavailable and expensive, aryl triflates. The reaction proceeded with high efficiency and remarkable regioselectivity without the need for costly or toxic halide scavengers, leading exclusively to substitution by aryl groups of diverse electronic and steric properties at the olefinic carbon alpha to the heteroatom of 1a-g and beta to the heteroatom of 1h. In contrast, the arylation reaction in molecular solvents led to mixtures of regioisomers under similar conditions. Several lines of evidence point to the unique regiocontrol stemming from the ionic environment provided by the ionic liquid that alters the reaction pathway. The chemistry provides a simple, effective method for preparing branched, arylated olefins and contributes to the extension of Heck reaction to a wider range of substrates.  相似文献   

14.
Highly regioselective Heck couplings of aryl triflates with N-acyl-N-vinylamines lacking an N-alkyl substituent were achieved with reaction times of approximately 1 h in yields ranging from 62 to 98% using 1.5 mol % of Pd(2)(dba)(3), 3 mol % of DPPF, and diethylisopropylamine in dioxane. The efficiency of these cross-couplings were studied with several N-vinylamides and an example each of an N-vinylcarbamate and an N-vinylurea. The Heck coupling products easily underwent acidic hydrolysis to the corresponding aryl methyl ketone or in situ hydrogenation in the presence of (Ph(3)P)(3)RhCl under a hydrogen atmosphere to provide the N-acyl derivatives of pharmaceutically relevant benzylic amines. The coupling of a vinyl triflate and more interestingly a vinyl tosylate to N-vinyl acetamide was also studied affording a 2-acylamino-1,3-butadiene with the same high regioselectivity in preference for the alpha-isomer. This result suggests that Heck couplings of electron-rich alkenes with vinyl tosylates also follow a cationic pathway.  相似文献   

15.
Two efficient Pd‐catalyzed tandem pathways for the synthesis of 4,4‐diaryl‐2‐butanones and 4,4‐diaryl‐3‐buten‐2‐ones were elaborated. The first step in both procedures was the Heck coupling of methyl vinyl ketone (MVK) and various aryl iodides leading to 4‐aryl‐3‐buten‐2‐one with the yield of up to 92% in 1 hr. The second step performed with the same catalyst and a new portion of aryl iodide in the presence K2CO3 as a base produced 4,4‐diaryl‐3‐buten‐2‐ones in high yield. Reaction selectivity changed completely to saturated 4,4‐diaryl‐2‐butanones, reductive Heck products, when a tertiary amine was used instead of K2CO3. Due to the application of microwave irradiation (MW), the desired products were obtained in high yield in a short time (4 hr), using 0.5 mol% of the Pd (OAc)2 catalyst without additional ligands.  相似文献   

16.
The rate of the Pd/C catalyzed Heck coupling of Ar-I with CH(2)=CH-R is accelerated tenfold by the presence of Aliquat 336 (A336), a well known phase transfer catalyst, and an ionic liquid. Both when conducted in A336 as solvent, and in an isooctane/A336/aqueous triphasic mixture, the Heck reaction of aryl iodides with electron deficient olefins, catalyzed by Pd/C, proceeds with high yields and selectivity. When KOH is used instead of Et(3)N, selective formation of the biphenyl rather than the Heck product, is observed. Aryl bromides react more sluggishly, and only the more activated ones undergo the Heck reaction. In the absence of the olefin, aryl halides possessing an electron withdrawing group are reduced to the corresponding Ar-H.  相似文献   

17.
An efficient Pd-catalyzed Heck reaction of aryl chlorides with olefins under mild conditions is described. High yields of products were achieved with n-Bu(4)N(+)OAc(-) as base. Significantly, the temperature of the Heck reaction of diverse nonactivated aryl chlorides can be lowered to 80 °C. The new reaction system can also tolerate a wider range of olefins.  相似文献   

18.
无配体Pd/LDH-F催化剂在Heck和Suzuki反应中的应用   总被引:1,自引:0,他引:1  
 以氟离子插层的水滑石LDH-F为载体,用逐滴浸渍法制备了新型Pd/LDH-F催化剂,并用其催化溴代芳烃的Heck和Suzuki偶联反应. 用X射线衍射表征了催化剂的晶相,以等离子体发射光谱测定了溶剂中钯的流失量. 结果表明,对于Heck反应,在无配体存在和低钯用量(Pd/溴代芳烃摩尔比为0.001)的情况下, Pd/LDH-F的催化性能优于其它载体负载的Pd催化剂,显示出很高的催化活性和选择性. 在140 ℃和12 h的条件下, Pd/LDH-F催化溴苯与苯乙烯Heck反应产物的收率可达86%, 反应后催化剂经过分离,可循环使用四次其催化活性基本不变. 在DMF/水摩尔比为0.5的混合溶剂中,在室温和3 h 的条件下, Pd/LDH-F (Pd/溴代芳烃摩尔比为0.005)催化溴苯与苯基硼酸盐的Suzuki反应中,目标产物收率为99%.  相似文献   

19.
Multimetallic catalysis can effectively enhance the selectivity for the heterocoupling product over homocoupling products in cross-electrophilic couplings. We report the selective cross-coupling of aryl bromides with aryl fluorosulfonates via palladium and nickel cooperative catalysis for the synthesis of biaryls, which can be carried out at room temperature while having marvelous chemoselectivity. In addition, the reaction also has a good performance on the gram-scale reaction.  相似文献   

20.
A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel‐ and organic‐dye‐mediated photoredox catalysis is reported. Distinct from widely used palladium‐catalyzed formylation processes, this reaction proceeds by a two‐step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN‐mediated photoredox reaction. The formyl‐radical equivalent then undergoes nickel‐catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号