首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum‐based drugs are among the most active antitumor reagents in clinical practice; their application is limited by side effects and drug resistance. A novel and personalized near‐infrared (NIR) light‐activated nanoplatform is obtained by combining a photoactivatable platinum(IV) prodrug and a caspase imaging peptide conjugated with silica‐coated upconversion‐luminescent nanoparticles (UCNPs) for the remote control of antitumor platinum prodrug activation, and simultaneously for real‐time imaging of apoptosis induced by activated cytotoxicity. Upon NIR light illumination, the PtIV prodrug complex is activated at the surface of the nanoparticle and active components are selectively released which display cytotoxicity against human ovarian carcinoma A2780 cells and its cisplatin‐resistant variant A2780cis cells. More importantly, the caspases enzymes triggered by cytotoxicity would effectively cleave the probe peptide, thereby allowing the direct imaging of apoptosis in living cells.  相似文献   

2.
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off‐target immune‐modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt‐based chemotherapeutic agents to exploit their immune‐activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal PtIV prodrug containing a FPR1/2‐targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.  相似文献   

3.
4.
Two platinum(II) complexes, DN603 and DN604, were designed and prepared by using 3‐oxocyclobutane‐1,1‐dicarboxylate as a ligand. The compounds were prepared according to the concept that incorporation of a functionalized moiety in the leaving ligand that did not affect its coordination bonding to the metal atom would play a key role in the anticancer activity of the resulting platinum complex. The newly prepared compounds were found to show potent in vitro anticancer activity comparable to cisplatin and oxaliplatin; especially DN604, which exhibited low acute toxicity similar to carboplatin, and presented acceptable solubility and stability in water. Chemical and biological results indicated that the functionalized moiety, uncoordinated, led to potent anticancer activity and low apparent toxicity of the platinum complexes by affecting the kinetic properties of the compounds.  相似文献   

5.
Photothermal therapy (PTT) has been extensively developed as an effective approach against cancer. However, PTT can trigger inflammatory responses, in turn simulating tumor regeneration and hindering subsequent therapy. A therapeutic strategy was developed to deliver enhanced PTT and simultaneously inhibit PTT‐induced inflammatory response. 1‐Pyrene methanol was utilize to synthesize the anti‐inflammatory prodrug pyrene–aspirin (P‐aspirin) with a cleavable ester bond and also facilitate loading the prodrug on gold nanorod (AuNR)‐encapsulated graphitic nanocapsule (AuNR@G), a photothermal agent, through π–π interactions. Such AuNR@G‐P‐aspirin complexes were used for near‐infrared laser‐triggered photothermal ablation of solid tumor and simultaneous inhibition of PTT‐induced inflammation through the release of aspirin in tumor milieu. This strategy showed excellent effects in vitro and in vivo.  相似文献   

6.
DNA damage response plays a key role not only in maintaining genome integrity but also in mediating the antitumor efficacy of DNA‐damaging antineoplastic drugs. Herein, we report the rational design and evaluation of a PtIV anticancer prodrug inhibiting nucleotide excision repair (NER), one of the most pivotal processes after the formation of cisplatin‐induced DNA damage that deactivates the drug and leads to drug resistance in the clinic. This dual‐action prodrug enters cells efficiently and causes DNA damage while simultaneously inhibiting NER to promote apoptotic response. The prodrug is strongly active against the proliferation of cisplatin‐resistant human cancer cells with an up to 88‐fold increase in growth inhibition compared with cisplatin, and the prodrug is much more active than a mixture of cisplatin and an NER inhibitor. Our study highlights the importance of targeting downstream pathways after the formation of Pt‐induced DNA damage as a novel strategy to conquer cisplatin resistance.  相似文献   

7.
There has been increasing interest in the development of small molecules that can selectively bind to G‐quadruplex DNA structures. The latter have been associated with a number of key biological processes and therefore are proposed to be potential targets for drug development. Herein, we report the first example of a reduction‐activated G‐quadruplex DNA binder. We show that a new octahedral platinum(IV)–salphen complex does not interact with DNA in aqueous media at pH 7.4; however, upon addition of bioreductants such as ascorbic acid or glutathione, the compound is readily reduced to the corresponding square planar platinum(II) complex. In contrast to the parent platinum(IV) complex, the in situ generated platinum(II) complex has good affinity for G‐quadruplex DNA.  相似文献   

8.
Platinum anticancer drugs are particularly in need of controlled drug delivery because of their severe side effects. Platinum(IV) agents are designed as prodrugs to reduce the side effects of platinum(II) drugs; however, premature reduction could limit the effect as a prodrug. In this work, a highly biocompatible, pH and redox dual‐responsive delivery system is prepared by using hybrid nanoparticles of human serum albumin (HSA) and calcium phosphate (CaP) for the PtIV prodrug of cisplatin. This conjugate is very stable under extracellular conditions, so that it protects the platinum(IV) prodrug in HSA. Upon reaching the acidic and hypoxic environment, the platinum drug is released in its active form and is able to bind to the target DNA. The Pt–HSA/CaP hybrid inhibits the proliferation of various cancer cells more efficiently than cisplatin. Different cell cycle arrests suggest different cellular responses of the PtIV prodrug in the CaP nanocarrier. Interestingly, this delivery system demonstrates enhanced cytotoxicity to tumor cells, but not to normal cells.  相似文献   

9.
Facile strategies were developed for the versatile functionalization of platinum(IV) axial sites, allowing for easy accessibility to unsymmetric mono‐ and mixed‐carboxylato, as well as symmetric di‐substituted platinum(IV) complexes. The first method involves the direct oxidation and carboxylation of the platinum(II) center using an appropriate peroxide and the carboxylate of choice to firstly yield a monocarboxylato monohydroxido platinum(IV) complex. This platinum(IV) intermediate can undergo further carboxylation to give rise to a mixed‐carboxylato platinum(IV) complex. The second method involves the activation of the carboxylate of choice by a common carbodiimide coupling reagent, and its reaction with a dihydroxido platinum(IV) precursor to give the monocarboxylato platinum(IV) complex. Uronium salts can be employed to promote efficient dicarboxylation of the dihydroxido platinum(IV) precursor. Lastly, an axial azide pendant group was demonstrated to be suitable for orthogonal “click” conjugation reactions.  相似文献   

10.
Oxaliplatin and cisplatin belong to the class of platinum‐based anticancer agents. Formation of DNA adducts by these complexes and the consequences for its structure and function, is the mechanistic paradigm by which these drugs exert their antitumor activity. We show that employing short oligonucleotide duplexes containing single, site‐specific 1,3‐intrastrand cross‐links of oxaliplatin, its enantiomeric analogue, or cisplatin and by using gel electrophoresis that under physiological conditions the coordination bonds between platinum and the N7 position of guanine residues involved in the cross‐links of the PtII complexes can be cleaved. This cleavage may lead to linkage isomerization reactions between these metallodrugs and double‐helical DNA. For instance, approximately 25 % 1,3‐intrastrand cross‐links of the platinum complexes isomerized after 192 h (at 310 K in 200 mM NaClO4). Differential scanning calorimetry of duplexes containing single, site‐specific cross‐links of oxaliplatin, its enantiomeric analogue, and cisplatin reveals that one of the driving forces that leads to the lability of DNA cross‐links of these metallodrugs is a difference between the thermodynamic destabilization induced by the cross‐link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross‐links originally formed in one strand of the DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. In addition, the differences in the kinetics of the rearrangement reactions and the thermodynamic destabilization of DNA observed for adducts of oxaliplatin and its enantiomeric analogue confirm that the chirality at the carrier 1,2‐diaminocyclohexane ligand can considerably affect structural and other physical properties of DNA adducts and consequently their biological effects. In aggregate, interesting generalization of the results described in this work might be that the migration of oxaliplatin, its enantiomeric analogue, or cisplatin from one strand to another in double‐helical DNA controlled by energetic signatures of these agents might contribute to a better understanding of their cytotoxic and mutagenic potential.  相似文献   

11.
Targeting cancer with small molecule prodrugs should help overcome problems associated with conventional cancer‐targeting methods. Herein, we focused on lysine‐specific demethylase 1 (LSD1) to trigger the controlled release of anticancer drugs in cancer cells, where LSD1 is highly expressed. Conjugates of the LSD1 inhibitor trans‐2‐phenylcyclopropylamine (PCPA) were used as novel prodrugs to selectively release anticancer drugs by LSD1 inhibition. As PCPA‐drug conjugate (PDC) prototypes, we designed PCPA‐tamoxifen conjugates 1 a and 1 b , which released 4‐hydroxytamoxifen in the presence of LSD1 in vitro. Furthermore, 1 a and 1 b inhibited the growth of breast cancer cells by the simultaneous inhibition of LSD1 and the estrogen receptor without exhibiting cytotoxicity toward normal cells. These results demonstrate that PDCs provide a useful prodrug method that may facilitate the selective release of drugs in cancer cells.  相似文献   

12.
Real-time tracking of prodrug uptake, delivery and activation in vivo represents a major challenge for prodrug development. Herein, we demonstrate the use of novel glycosylated theranostics of the cancer pharmacophore Amonafide in highly-selective, enzymatic triggered release. We show that the use of endogenous enzymes for activated release of the therapeutic component can be observed, in real time, and monitored using one and two-photon bioimaging, offering unique insight into the prodrug pharmacokinetic profile. Furthermore, we demonstrate that the potent cytotoxicity of Amonafide is preserved using this targeted approach.  相似文献   

13.
14.
Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P‐glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT‐11) and a NO‐releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp‐mediated MDR reversal agent. The site‐specific drug release and the NO‐reduced Pgp‐mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell‐killing threshold, eventually inducing its antitumor activity. These results reveal that this pH‐responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.  相似文献   

15.
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum‐based anticancer drugs.  相似文献   

16.
[Pt(cur)(NH3)2](NO3) ( 1 ), a curcumin‐bound cis‐diammineplatinum(II) complex, nicknamed Platicur, as a novel photoactivated chemotherapeutic agent releases photoactive curcumin and an active platinum(II) species upon irradiation with visible light. The hydrolytic instability of free curcumin reduces upon binding to platinum(II). Interactions of 1 with 5′‐GMP and ct‐DNA indicated formation of platinum‐bound DNA adducts upon exposure to visible light (λ=400–700 nm). It showed apoptotic photocytotoxicity in cancer cells (IC50≈15 μM ), thus forming ?OH, while remaining passive in the darkness (IC50>200 μM ). A comet assay and platinum estimation suggest Pt–DNA crosslink formation. The fluorescence microscopic images showed cytosolic localization of curcumin, thus implying possibility of dual action as a chemo‐ and phototherapeutic agent.  相似文献   

17.
Two small‐molecule–drug conjugates (SMDCs, 6 and 7 ) featuring lysosomally cleavable linkers (namely the Val–Ala and Phe–Lys peptide sequences) were synthesized by conjugation of the αvβ3‐integrin ligand cyclo[DKP–RGD]‐CH2NH2 ( 2 ) to the anticancer drug paclitaxel (PTX). A third cyclo[DKP–RGD]–PTX conjugate with a nonpeptide “uncleavable” linker ( 8 ) was also synthesized to be tested as a negative control. These three SMDCs were able to inhibit biotinylated vitronectin binding to the purified αVβ3‐integrin receptor at nanomolar concentrations and showed good stability at pH 7.4 and pH 5.5. Cleavage of the two peptide linkers was observed in the presence of lysosomal enzymes, whereas conjugate 8 , which possesses a nonpeptide “uncleavable” linker, remained intact under these conditions. The antiproliferative activities of the conjugates were evaluated against two isogenic cell lines expressing the integrin receptor at different levels: the acute lymphoblastic leukemia cell line CCRF‐CEM (αVβ3?) and its subclone CCRF‐CEM αVβ3Vβ3+). Fairly effective integrin targeting was displayed by the cyclo[DKP–RGD]–Val–Ala–PTX conjugate ( 6 ), which was found to differentially inhibit proliferation in antigen‐positive CCRF‐CEM αVβ3 versus antigen‐negative isogenic CCRF‐CEM cells. The total lack of activity displayed by the “uncleavable” cyclo[DKP–RGD]–PTX conjugate ( 8 ) clearly demonstrates the importance of the peptide linker for achieving the selective release of the cytotoxic payload.  相似文献   

18.
This work takes advantage of one of the hallmarks of cancer, that is, the presence of tumor infiltrating cells of the immune system and leukocyte-secreted enzymes, to promote the activation of an anticancer drug at the tumor site. The peptidomimetic integrin ligand cyclo(DKP-RGD) was found to accumulate on the surface of αvβ3 integrin-expressing human renal cell carcinoma 786-O cells. The ligand was conjugated to the anticancer drug paclitaxel through a Asn-Pro-Val (NPV) tripeptide linker, which is a substrate of neutrophil-secreted elastase. In vitro linker cleavage assays and cell antiproliferative experiments demonstrate the efficacy of this tumor-targeting conjugate, opening the way to potential therapeutic applications.  相似文献   

19.
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl‐bis‐hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a PtIV pro‐drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.  相似文献   

20.
Recently, polymer drug conjugates (PDCs) have attracted considerable attention in the treatment of cancer. In this work, a simple strategy has been developed to make PDCs of an antitumor alkylating agent, chlorambucil, using a biocompatible disulphide linker. Chlorambucil‐based chain transfer agent was used to prepare various homopolymers and block copolymers in a controlled fashion via reversible addition–fragmentation chain transfer polymerization. Chlorambucil conjugated block copolymer, poly(polyethylene glycol monomethyl ether methacrylate)‐b‐poly(methyl methacrylate), formed nanoaggregates in aqueous solutions, which are characterized by dynamic light scattering and field emission‐scanning electron microscopy. Finally, the simplicity of the design is exemplified by performing a release study of chlorambucil under reducing condition by using D,L‐dithiothreitol.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号