首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of large synthetic ligands could be useful to target the sizeable surface areas involved in protein–protein interactions. Herein, we present long helical aromatic oligoamide foldamers bearing proteinogenic side chains that cover up to 450 Å2 of the human carbonic anhydrase II (HCA) surface. The foldamers are composed of aminoquinolinecarboxylic acids bearing proteinogenic side chains and of more flexible aminomethyl-pyridinecarboxylic acids that enhance helix handedness dynamics. Crystal structures of HCA-foldamer complexes were obtained with a 9- and a 14-mer both showing extensive protein–foldamer hydrophobic contacts. In addition, foldamer–foldamer interactions seem to be prevalent in the crystal packing, leading to the peculiar formation of an HCA superhelix wound around a rod of stacked foldamers. Solution studies confirm the positioning of the foldamer at the protein surface as well as a dimerization of the complexes.  相似文献   

2.
A series of small, unsymmetrical pyridine‐2,6‐dicarboxylamide oligoamide foldamers with varying lengths and substituents at the end groups were synthetized to study their conformational properties and folding patterns. The @‐type folding pattern resembled the oxyanion‐hole motifs of enzymes, but several alternative folding patterns could also be characterized. Computational studies revealed several alternative conformers of nearly equal stability. These folding patterns differed from each other in their intramolecular hydrogen‐bonding patterns and aryl–aryl interactions. In the solid state, the foldamers adopted either the globular @‐type fold or the more extended S‐type conformers, which were very similar to those foldamers obtained computationally. In some cases, the same foldamer molecule could even crystallize into two different folding patterns, thus confirming that the different folding patterns are very close in energy in spite of their completely different shapes. Finally, the best match for the observed NOE interactions in the liquid state was a conformation that matched the computationally characterized helix‐type fold.  相似文献   

3.
The thermally induced conformational switching of a stacked dialkxoynaphthalene–naphthalenetetracarboxylic diimide (DAN–NDI) amphiphilic foldamer to an NDI–NDI fibril aggregate is described. The aggregated fibril structures were explored by UV/Vis, circular dichroism (CD), atomic‐force microscopy (AFM), and TEM techniques. Our findings indicate that the aromatic DAN–NDI interactions of the original foldamer undergoes transformation to a fibrillar assembly with aromatic NDI–NDI stacked interactions. These structural insights could help inform new molecular designs and increase our understanding of fibrillar assembly and aggregation process in aqueous solution.  相似文献   

4.
Foldamers are an important class of abiotic macromolecules, with potential therapeutic applications in the disruption of protein–protein interactions. The majority adopt a single conformational motif such as a helix. A class of foldamer is now introduced where the choice of heterocycle within each monomer, coupled with a strong conformation‐determining dipole repulsion effect, allows both helical and extended conformations to be selected. Combining these monomers into hetero‐oligomers enables highly controlled exploration of conformational space and projection of side‐chains along multiple vectors. The foldamers were rapidly constructed via an iterative deprotection‐cross‐coupling sequence, and their solid‐ and solution‐phase conformations were analysed by X‐ray crystallography and NMR and CD spectroscopy. These molecules may find applications in protein surface recognition where the interface does not involve canonical peptide secondary structures.  相似文献   

5.
Two α-aminoisobutyric acid (Aib) foldamers bearing Zn(II)-chelating N-termini have been synthesized and compared with a reported Aib foldamer that has a bis(quinolinyl)/mono(pyridyl) cap (BQPA group). Replacement of the quinolinyl arms of the BQPA-capped foldamer with pyridyl gave a BPPA-capped foldamer, then further replacement of the linking pyridyl with a 1,2,3-triazole gave a BPTA-capped foldamer. Their ability to relay chiral information from carboxylate bound to Zn(II) at the N-terminus to a glycinamide-based NMR reporter of conformational preference at the C-terminus was measured. The importance of the quinolinyl arms became readily apparent, as the foldamers with pyridyl arms were unable to report on the presence of chiral carboxylate in acetonitrile. Low solubility, X-ray crystallography and 1H NMR spectroscopy suggested that interfoldamer interactions inhibited carboxylate binding. However changing solvent to methanol revealed that the end-to-end relay of chiral information could be observed for the Zn(II) complex of the BPTA-capped foldamer at low temperature.  相似文献   

6.
Peptide foldamers containing both cis ‐β‐aminocyclopentanecarboxylic acid and α‐amino acid residues combined in various sequence patterns (ααβ, αααβ, αβααβ, and ααβαααβ) were screened using CD and NMR spectroscopy for the tendency to form helices. ααβ‐Peptides were found to fold into an unprecedented and well‐defined 16/17/15/18/14/17‐helix. By extending the length of the sequence or shifting a fragment of the sequence from one terminus to another in ααβ‐peptides, the balance between left‐handed and right‐handed helix populations present in the solution can be controlled. Engineering of the peptide sequence could lead to compounds with either a strong propensity for the selected helix sense or a mixture of helical conformations of opposite senses.  相似文献   

7.
The creation of self‐assembling microscale architectures that possess new and useful physical properties remains a significant challenge. Herein we report that an 11‐helical foldamer self‐assembles in a controlled manner to form a series of 3D foldectures with unusual three‐fold symmetrical shapes that are distinct from those generated from 12‐helical foldamers. The foldamer packing motif was revealed by powder X‐ray diffraction technique, and provides an important link between the molecular‐level symmetry and the microscale morphologies. The utility of foldectures with hollow interiors as robust and well‐defined supramolecular hosts was demonstrated for inorganic, organic, and even protein guests. This work will pave the way for the design of functional foldectures with greater 3D shape diversity and for the development of biocompatible delivery vehicles and containment vessels.  相似文献   

8.
Herein we report the design and synthesis of crescent‐shaped and helical urea‐based foldamers, the curvature of which is controlled by varying the constituent building blocks and their connectivity. These oligomers are comprised of two, three or five alternating aromatic heterocycles (pyridazine, pyrimidine or pyrazine) and methyl‐substituted aromatic carbocycles (tolyl, o‐xylyl or m‐xylyl) connected together through urea linkages. A crescent‐shaped conformational preference is encoded within these π‐conjugated urea‐linked oligomers based on intramolecular hydrogen bonding and steric interactions; the degree of curvature is tuned by the urea connectivity to the heterocycles and the aryl groups. NMR characterization of these foldamers confirms the intramolecular hydrogen‐bonded conformation expected (Z,E configuration of the urea bond) in both the pyridazyl and pyrimidyl foldamers in solution. An X‐ray crystal structure of the N3,N6‐diisobutylpyridazine‐4,6‐diamine–o‐tolyl urea‐linked foldamer ( 4 ) confirms the presence of N? H???N hydrogen bonds between the heterocyclic nitrogen atom and the free hydrogen of the urea linkage. Additionally, the tolyl methyl group interacts unfavourably with the urea carbonyl oxygen, thus destabilising the alternate planar conformation.  相似文献   

9.
The anion‐binding properties of three closely related oligoamide foldamers were studied using NMR spectroscopy, isothermal titration calorimetry and mass spectrometry, as well as DFT calculations. The 1H NMR spectra of the foldamers in [D6]acetone solution revealed partial preorganization by intramolecular hydrogen bonding, which creates a suitable cavity for anion binding. The limited size of the cavity, however, enabled efficient binding by the inner amide protons only for the chloride anion resulting in the formation of a thermodynamically stable 1:1 complex. All 1:1 chloride complexes displayed a significant favourable contribution of the entropy term. Most likely, this is due to the release of ordered solvent molecules solvating the free foldamer and the anion to the bulk solution upon complex formation. The introduction of electron‐withdrawing substituents in foldamers 2 and 3 had only a slight effect on the thermodynamic constants for chloride binding compared to the parent receptor. Remarkably, the binding of chloride to foldamer 3 not only produced the expected 1:1 complex but also open aggregates with 1:2 (host:anion) stoichiometry.  相似文献   

10.
Metal-coordinated frameworks derived from small peptidic ligands have received much attention thanks to peptides’ vast structural and functional diversity. Various peptides with partial conformational preferences have been used to build metal–peptide frameworks, however, the use of conformationally constrained β-peptide foldamers has not been explored yet. Herein we report the first metal-coordination-mediated assembly of β-peptide foldamers with 12-helical folding propensity. The coordination of Ag+ to the terminal pyridyl moieties afforded a set of metal–peptide frameworks with unique entangled topologies. Interestingly, formation of the network structures was accompanied by notable conformational distortions of the foldamer ligands. As the first demonstration of new metal–peptide frameworks built from modular β-peptide foldamers, we anticipate that this work will be an important benchmark for further structural evolution and mechanistic investigation.  相似文献   

11.
pi-pi Stacking interactions between electron deficient naphthalenediimides (NDI) and electron-rich porphyrins (POR) leading to charge transfer are shown to be prevalent in linked NDI-POR and POR-NDI-POR structures. For flexibly-linked systems, intramolecular interactions lead to S-shaped foldamers in solution, whereas intermolecular association is predominant in more rigid systems. The foldamer structures can be interrupted by competing aromatic solvents, by six-coordination of metallated porphyrin derivatives, by protonation of the free base porphyrin in non-metallated structures, and in facially sterically hindered porphyrins.  相似文献   

12.
Molecules that bind to specific surface sites on proteins are of great interest from both fundamental and practical perspectives. We are exploring a ligand development strategy that is based on oligomers with discrete folding propensities ("foldamers"); we target a specific cleft on the cancer-associated protein Bcl-xL because this system is well characterized structurally. In vivo, this cleft binds to alpha-helical segments (BH3 domains) of other proteins. We evaluated several types of helical foldamer, built entirely from beta-amino acid residues or from mixtures of alpha- and beta-amino acid residues, and ultimately identified foldamers in the latter class that bind very tightly to Bcl-xL. Our results suggest that combining different types of foldamer backbones will be an effective and general strategy for creating high-affinity and specific ligands for protein surface sites.  相似文献   

13.
Molecular chirality is ubiquitous in nature. The natural biopolymers, proteins and DNA, preferred a right‐handed helical bias due to the inherent stereochemistry of the monomer building blocks. Here, we are reporting a rare co‐existence of left‐ and right‐handed helical conformations and helix‐terminating property at the C‐terminus within a single molecule of α,γ‐hybrid peptide foldamers composed of achiral Aib (α‐aminoisobutyric acid) and 3,3‐dimethyl‐substituted γ‐amino acid (Adb; 4‐amino‐3,3‐dimethylbutanoic acid). At the molecular level, the left‐ and right‐handed helical screw sense of α,γ‐hybrid peptides are representing a macroscopic tendril perversion. The pronounced helix‐terminating behaviour of C‐terminal Adb residues was further explored to design helix–Schellman loop mimetics and to study their conformations in solution and single crystals. The stereochemical constraints of dialkyl substitutions on γ‐amino acids showed a marked impact on the folding behaviour of α,γ‐hybrid peptides.  相似文献   

14.
The development of peptidomimetic helical foldamers with a wide repertoire of functions is of significant interest. Herein, we report the X‐ray crystal structures of a series of homogeneous l ‐sulfono‐γ‐AA foldamers and elucidate their folding conformation at the atomic level. Single‐crystal X‐ray crystallography revealed that this class of oligomers fold into unprecedented dragon‐boat‐shaped and unexpected left‐handed helices, which are stabilized by the 14‐hydrogen‐bonding pattern present in all sequences. These l ‐sulfono‐γ‐AApeptides have a helical pitch of 5.1 Å and exactly four side chains per turn, and the side chains lie perfectly on top of each other along the helical axis. 2D NMR spectroscopy, computational simulations, and CD studies support the folding conformation in solution. Our results provide a structural basis at the atomic level for the design of novel biomimetics with a precise arrangement of functional groups in three dimensions.  相似文献   

15.
This note describes the design, synthesis, and conformational studies of a novel hybrid foldamer that adopts a definite compact, three-dimensional structure determined by a combined effect of the special conformational properties of the foldamer constituents. The striking feature of this de novo designed foldamer is its ability to display periodic gamma-turn conformations stabilized by intramolecular hydrogen bonds. Conformational investigations by single-crystal X-ray studies, solution-state NMR, and ab initio MO theory at the HF/6-31G* level strongly support the prevalence of gamma-turn motifs in both the di- and tetrapeptide foldamers, which are presumably stabilized by bifurcated hydrogen bonds in the solid and solution states. The strategy disclosed herein for the construction of hybrid foldamers with periodic gamma-turn motifs has the potential to significantly augment the conformational space available for foldamer design with diverse backbone structures and conformations.  相似文献   

16.
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer–peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.  相似文献   

17.
The development of foldamers capable of selective molecular recognition of solvent exposed protein surfaces represents an outstanding challenge in supramolecular chemical biology. Here we introduce an oligoamide foldamer with well-defined conformation that bears all the hallmarks of an information rich oligomer. Specifically, the foldamer recognizes its target protein hDM2 leading to inhibition of its protein–protein interaction with p53 in a manner that depends upon the composition, spatial projection and stereochemistry of functional groups appended to the scaffold. Most significantly, selective inhibition of p53/hDM2 can be achieved against four other targets and the selectivity for p53/hDM2 inhibition versus Mcl-1/NOXA-B inhibition is critically dependent upon the stereochemistry of the helix mimetic.  相似文献   

18.
The biological activity of antibiotic peptaibols has been linked to their ability to aggregate, but the structure–activity relationship for aggregation is not well understood. Herein, we report a systematic study of a class of synthetic helical oligomer (foldamer) composed of aminoisobutyric acid (Aib) residues, which mimic the folding behavior of peptaibols. NMR spectroscopic analysis was used to quantify the dimerization constants in solution, which showed hydrogen‐bond donors at the N terminus promoted aggregation more effectively than similar modifications at the C terminus. Elongation of the peptide chain also favored aggregation. The geometry of aggregation in solution was investigated by means of titrations with [D6]DMSO and 2D NOE NMR spectroscopy, which allowed the NH protons most involved in intermolecular hydrogen bonds in solution to be identified. X‐ray crystallography studies of two oligomers allowed a comparison of the inter‐ and intramolecular hydrogen‐bonding interactions in the solid state and in solution and gave further insight into the geometry of foldamer–foldamer interactions. These solution‐based and solid‐state studies indicated that the preferred geometry for aggregation is through head‐to‐tail interactions between the N and C termini of adjacent Aib oligomers.  相似文献   

19.
We describe the use of parallel and split-and-mix library synthesis strategies for exploration of structure-activity relationships among peptidic foldamer ligands for the BH3-recognition cleft of the anti-apoptotic protein Bcl-xL. This effort began with a chimeric (alpha/beta+alpha)-peptide oligomer (composed of an alpha/beta-peptide segment and an alpha-peptide segment) that we previously identified to bind tightly to the target cleft on Bcl-xL. The side chains that interact with Bcl-xL were varied in a 1000-member one-bead-one-compound library. Fluorescence polarization (FP) screening identified four new analogues with binding affinities similar to that of the lead compound but no analogues with enhanced affinity. These results suggested that significant improvements in affinity were unlikely in this series. We then used library synthesis to examine backbone variations in the C-terminal alpha-peptide segment of the lead compound. These studies provided an opportunity for direct comparison of parallel and split-and-mix synthesis formats for foldamer libraries with respect to synthetic variability and assay sensitivity. We found that compounds from both the parallel and one-bead-one-compound libraries could be reliably screened in a competition FP assay without purification of library members. Our findings should facilitate the use of combinatorial library synthesis for exploration of foldamers as inhibitors of protein-protein interactions.  相似文献   

20.
Previously, we reported an abiotic amphiphilic foldamer that, upon heating, undergoes an irreversible conformational change to a highly aggregated state (Nguyen, J.Q.; Iverson, B.L. J. Am. Chem. Soc. 1999, 121, 2639-2640.). Herein, we extend this work through the study of a series of structurally related amphiphilic foldamers and present a more refined model of their conformational switching behavior. Prior to heating, all foldamers of the series exhibited spectral characteristics consistent with folding in the pleated, stacked geometry characteristic of this class of foldamer. Following heating at 80 degrees C, three of the four molecules exhibited irreversible aggregation to produce hydrogels. The hydrogels were characterized by rheology measurements, and circular dichroism spectra revealed that hydrogel formation was dependent on highly ordered intermolecular assembly, conceptually analogous to protein amyloid formation. Hydrogel formation had the effect of amplifying the subtle structural differences between molecules, as the three amphiphilic foldamer constitutional isomers that formed hydrogels upon heating displayed significant differences in hydrogel properties. Taking a global view, our results indicate that amyloid-like behavior is not unique to proteins but may be a relatively general property of amphiphilic folding molecules in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号