首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.

  相似文献   


3.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

4.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

5.
Two polymorphs of the spin crossover (SCO) compound [Fe(1,3‐bpp)2](ClO4)2 ( 1 and 2 ; 1,3‐bpp=2‐(pyrazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid‐state procedure, by sequentially removing lattice H2O molecules from the solvatomorph [Fe(1,3‐bpp)2](ClO4)2?2 H2O ( 2 ?2 H2O), using single‐crystal‐to‐single‐crystal (SCSC) transformations. Hydrate 2 ?2 H2O is obtained through the same reaction as 1 , now with 2.5 % of water added. Compounds 2 and 2 ?2 H2O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3‐bpp)2](ClO4)2?H2O ( 2 ?H2O), also following SCSC processes. The four derivatives have been characterised by single‐crystal X‐ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X‐ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑=279/316 K and T1/2↓=276/314 K (near 40 K of shift) and different cooperativity.  相似文献   

6.
7.
In the series of polymeric spin‐crossover compounds Fe(X‐py)2[Ag(CN)2)]2 (py=pyridine, X=H, 3‐Cl, 3‐methyl, 4‐methyl, 3,4‐dimethyl), magnetic and calorimetric measurements have revealed that the conversion from the high‐spin (HS) to the low‐spin (LS) state occurs by two‐step transitions for three out of five members of the family (X=H, 4‐methyl, and X=3,4‐dimethyl). The two other compounds (X=3‐Cl and 3‐methyl) show respectively an incomplete spin transition and no transition at all, the latter remaining in the HS state in the whole temperature range. The spin‐crossover behaviour of the compound undergoing two‐step transitions is well described by a thermodynamic model that considers both steps. Calculations with this model show low cooperativity in this type of systems. Reflectivity and photomagnetic experiments reveal that all of the compounds except that with X=3‐methyl undergo light‐induced excited spin state trapping (LIESST) at low temperatures. Isothermal HS‐to‐LS relaxation curves at different temperatures support the low‐cooperativity character by following an exponential decay law, although in the thermally activated regime and for aX=H and X=3,4‐dimethyl the behaviour is well described by a double exponential function in accordance with the two‐step thermal spin transition. The thermodynamic parameters determined from this isothermal analysis were used for simulation of thermal relaxation curves, which nicely reproduce the experimental data.  相似文献   

8.
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2] ? nSolv (TPT=[(2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine]; MI=Ag (nSolv=0, 1 MeOH, 2 CH2Cl2), Au (nSolv=0, 2 CH2Cl2)) have been synthesized and their crystal structures were determined at 120 K and 293 K by single‐crystal X‐ray analysis. These structures crystallized in the trigonal R‐3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin‐crossover behaviour at the FeII ions, the most significant structural variation being the change in unit‐cell volume (about 59 Å3 per FeII ion). The spin‐crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry.  相似文献   

9.
A neutral mononuclear FeIII complex [FeIII(H‐5‐Br‐thsa‐Me)(5‐Br‐thsa‐Me)]?H2O ( 1 ; H2‐5‐Br‐thsa‐Me=5‐bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three‐step spin‐crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS–2LS and 2HS–4LS, which exhibited reentrant phase‐transition behavior. This study provides a new platform for examining multistability in SCO complexes.  相似文献   

10.
The orientation of the high‐spin (HS)–low‐spin (LS) macroscopic interface at the thermal transition of thin [{Fe(NCSe)(py)2}2(m‐bpypz)] crystals is explained by considering the possible vanishing of the structural mismatch between the coexisting phases. The structural property which allows mismatch‐free interfaces is characterized. The observed orientations of the interface and the tilt angle between the HS and LS domains are accurately reproduced by a two‐dimensional continuous medium model, based on the structural data. Simulations using an atomistic electro‐elastic model meet the predictions of the macroscopic analysis and provide information on the distribution of the elastic energy density in the biphasic state. The presence of mismatch‐free domain structures can explain the exceptional resilience of these crystals upon repeated switching.  相似文献   

11.
Four new 1D spin‐Peierls‐type compounds, [D5]1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate ([D5]R‐Py; R=F, I, CH3, and NO2), were synthesized and characterized structurally and magnetically. These 1D compounds are isostructural with the corresponding non‐deuterated compounds, 1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate (R‐Py; R=F, I, CH3, and NO2). Compounds [D5]R‐Py and R‐Py (R=F, I, CH3, and NO2) crystallize in the monoclinic space group P21/c with uniform stacks of anions and cations in the high‐temperature phase and triclinic space group P$\bar 1$ with dimerized stacks of anions and cations in the low‐temperature phase. Similar to the non‐deuterated R‐Py compounds, a spin‐Peierls‐type transition occurs at a critical temperature for each [D5]R‐Py compound; the magnetic character of the 1D S=1/2 ferromagnetic chain for [D5]F‐Py and the 1D S=1/2 Heisenberg antiferromagnetic chain for others appear above the transition temperature. Spin‐gap magnetic behavior was observed for all of these compounds below the transition temperature. In comparison to the corresponding R‐Py compound, the cell volume is almost unchanged for [D5]F‐Py and shows slight expansion for [D5]R‐Py (R=I, CH3, and NO2) as well as an increase in the spin‐Peierls‐type transition temperature for all of these 1D compounds in the order of F>I≈CH3≈NO2. The large isotopic effect of nonmagnetic countercations on the spin‐Peierls‐type transition critical temperature, TC, can be attributed to the change in ω0 with isotope substitution.  相似文献   

12.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

13.
14.
15.
The tetrapyridyl ligand bbpya (bbpya=N,N‐bis(2,2′‐bipyrid‐6‐yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2] ( 1 ) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai’s domain model, and powder X‐ray diffraction measurements, 1 is low‐spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2=418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong N?H???S intermolecular H‐bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1 . DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N′‐di(pyrid‐2‐yl)‐2,2′‐bipyridine‐6,6′‐diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2] ( 2 ). Periodic DFT calculations suggest that crystal‐packing effects are significant for compound 2 , in which they destabilize the HS state by about 1500 cm?1. The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.  相似文献   

16.
A spin‐crossover cluster with the {FeII4O4} core structure is presented by D. Y. Wu, O. Sato et al. in their Communication on page 1475 ff. The cluster is synthesized by self‐assembly and shows an abrupt spin transition, giving two high‐spin and two low‐spin states. It exhibits complete light‐induced excited spin‐state trapping effects. Importantly, synergy effects between the magnetic interaction and spin transition operate in the cluster.

  相似文献   


17.
The mechanism of the light‐induced spin crossover of the [Fe(bpy)3]2+ complex (bpy=2,2′‐bipyridine) has been studied by combining accurate electronic‐structure calculations and time‐dependent approaches to calculate intersystem‐crossing rates. We investigate how the initially excited metal‐to‐ligand charge transfer (MLCT) singlet state deactivates to the final metastable high‐spin state. Although ultrafast X‐ray free‐electron spectroscopy has established that the total timescale of this process is on the order of a few tenths of a picosecond, the details of the mechanisms still remain unclear. We determine all the intermediate electronic states along the pathway from low spin to high spin and give estimates for the deactivation times of the different stages. The calculations result in a total deactivation time on the same order of magnitude as the experimentally determined rate and indicate that the complex can reach the final high‐spin state by means of different deactivation channels. The optically populated excited singlet state rapidly decays to a triplet state with an Fe d6(${{\rm t}{{5\hfill \atop {\rm 2g}\hfill}}}$ ${{\rm e}{{1\hfill \atop {\rm g}\hfill}}}$ ) configuration either directly or by means of a triplet MLCT state. This triplet ligand‐field state could in principle decay directly to the final quintet state, but a much faster channel is provided by internal conversion to a lower‐lying triplet state and subsequent intersystem crossing to the high‐spin state. The deactivation rate to the low‐spin ground state is much smaller, which is in line with the large quantum yield reported for the process.  相似文献   

18.
19.
20.
By changing the surfactant/water ratio , nanoparticles of the iron(II) spin crossover material, [Fe(NH2‐trz)3]Br2 ? 3 H2O (with NH2‐trz=4‐amino‐1,2,4‐triazole), have been synthesised from 1 μm down to 30 nm (see figure). Magnetic and reflectivity experiments indicate that the critical size for observing a thermal hysteresis in this 1D polymer family is around 50 nm, and powder X‐ray diffraction shows that particles of about 30 nm are constituted by about one coherent domain.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号