首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ikarugamycin is a member of the polycyclic tetramate macrolactams (PTMs) family of natural products with diverse biological activities. The biochemical mechanisms for the formation of polycyclic ring systems in PTMs remain elusive. The enzymatic mechanism of constructing an inner five‐membered ring in ikarugamycin is reported. A three‐gene‐cassette ikaABC from the marine‐derived Streptomyces sp. ZJ306 is sufficient for conferring ikarugamycin production in a heterologous host. IkaC catalyzes a reductive cyclization reaction to form the inner five‐membered ring by a Michael addition‐like reaction. This study provides the first biochemical evidence for polycycle formation in PTMs and suggests a reductive cyclization strategy which may be potentially applicable in general to the corresponding ring formation in other PTMs.  相似文献   

2.
Vioprolides are a promising class of anticancer and antifungal lead compounds produced by the myxobacterium Cystobacter violaceus Cb vi35. Previously nothing had been reported about their biosynthesis, including the origin of the unusual 4‐methylazetidinecarboxylic acid (MAZ) moiety. We describe the vioprolide biosynthetic gene cluster and solve the production obstacle by expression in three heterologous hosts. Starting from unstable production in the wild type at the single‐digit mg L?1 scale, we developed a stable host that eventually allowed for yields of up to half a gram per liter in fermenters. Gene inactivations coupled with isotope feeding studies identified an S‐adenosylmethionine (SAM)‐dependent enzyme and a methyltransferase as being responsible for the generation of the MAZ building block by a proposed mechanism unprecedented in bacteria. Furthermore, nonnatural vioprolide derivatives were generated via rational genetic engineering.  相似文献   

3.
Nature provides an inexhaustible diversity of small organic molecules with beautiful molecular architectures that have strong and selective inhibitory activities. However, this tremendous biomedical potential often remains inaccessible, as the structural complexity of natural products can render their synthetic preparation extremely challenging. This problem is addressable by harnessing the biocatalytic procedures evolved by nature. In this work, we present an enzymatic total synthesis of ikarugamycin. The use of an iterative PKS/NRPS machinery and two reductases has allowed the construction of 15 carbon–carbon and 2 carbon–nitrogen bonds in a biocatalytic one‐pot reaction. By scaling‐up this method we demonstrate the applicability of biocatalytic approaches for the ex vivo synthesis of complex natural products.  相似文献   

4.
5.
6.
Microviridins are a family of ribosomally synthesized and post‐translationally modified peptides with a highly unusual architecture featuring non‐canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP‐grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT‐type N‐acetyltransferase. The method facilitates the efficient in vitro one‐pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo‐enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure–activity relationships for respective target proteases.  相似文献   

7.
Penitrem A is one of the most elaborated members of the fungal indole diterpenes. Two separate penitrem gene clusters were identified using genomic and RNA sequencing data, and 13 out of 17 transformations in the penitrem biosynthesis were elucidated by heterologous reconstitution of the relevant genes. These reactions involve 1) a prenylation‐initiated cationic cyclization to install the bicyclo[3.2.0]heptane skeleton (PtmE), 2) a two‐step P450‐catalyzed oxidative processes forming the unique tricyclic penitrem skeleton (PtmK and PtmU), and 3) five sequential oxidative transformations (PtmKULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products.  相似文献   

8.
9.
The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq‐related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC‐1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time.  相似文献   

10.
The biosynthetic machinery of the first fungal ribosomally synthesized and post‐translationally modified peptide (RiPP) ustiloxin B was elucidated through a series of gene inactivation and heterologous expression studies. The results confirmed an essential requirement for novel oxidases possessing the DUF3328 motif for macrocyclization, and highly unique side‐chain modifications by three oxidases (UstCF1F2) and a pyridoxal 5′‐phosphate (PLP)‐dependent enzyme (UstD). These findings provide new insight into the expression of the RiPP gene clusters found in various fungi.  相似文献   

11.
The antimalarial agent cladosporin is a nanomolar inhibitor of the Plasmodium falciparum lysyl‐tRNA synthetase, and exhibits activity against both blood‐ and liver‐stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it is biosynthesized by a highly reducing (HR) and a non‐reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism and subsequent heterologous expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the identity of the putative gene cluster. Incorporation of a pentaketide intermediate analogue indicated a 5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. Advanced‐intermediate analogues were synthesized and incorporated by Cla3 to furnish new cladosporin analogues. A putative lysyl‐tRNA synthetase resistance gene was identified in the cladosporin gene cluster. Analysis of the active site emphasizes key structural features thought to be important in resistance to cladosporin.  相似文献   

12.
Baicalein is a valuable flavonoid isolated from the medicinal plant Scutellaria baicalensis Georgi, which exhibits intensive biological activities, such as anticancer and antiviral activities. However, its production is limited in the root with low yield. In this study, In-Fusion and 2A peptide linker were developed to assemble SbCLL-7, SbCHI, SbCHS-2, SbFNSII-2 and SbCYP82D1.1 genes driven by the AtPD7, CaMV 35S and AtUBQ10 promoters with HSP, E9 and NOS terminators, and were used to engineer baicalein biosynthesis in transgenic tomato plants. The genetically modified tomato plants with this construct synthesized baicalein, ranging from 150 ng/g to 558 ng/g FW (fresh weight). Baicalein-fortified tomatoes have the potential to be health-promoting fresh vegetables and provide an alternative source of baicalein production, with great prospects for market application.  相似文献   

13.
The 1,3‐enyne moiety is commonly found in cyclohexanoid natural products produced by endophytic and plant pathogenic fungi. Asperpentyn ( 1 ) is a 1,3‐enyne‐containing cyclohexanoid terpenoid isolated from Aspergillus and Pestalotiopsis. The genetic basis and biochemical mechanism of 1,3‐enyne biosynthesis in 1 , and other natural products containing this motif, has remained enigmatic despite their potential ecological roles. Identified here is the biosynthetic gene cluster and characterization of two crucial enzymes in the biosynthesis of 1 . A P450 monooxygenase that has a dual function, to first catalyze dehydrogenation of the prenyl chain to generate a cis‐diene intermediate and then serve as an acetylenase to yield an alkyne moiety, and thus the 1,3‐enyne, was discovered. A UbiA prenyltransferase was also characterized and it is unusual in that it favors transferring a five‐carbon prenyl chain, rather than a polyprenyl chain, to a p‐hydroxybenzoic acid acceptor.  相似文献   

14.
15.
16.
17.
The absolute stereostructures of trangmolins A–F ( 1 – 6 ), limonoids with three new and one known topologies of the rings A and B, were unambiguously determined by NMR spectroscopic investigations, single‐crystal XRD analysis, and quantum‐chemical electronic circular dichroism calculations. Compounds 1 – 3 contain a hexahydro‐1H‐inden‐4‐one motif, compound 4 comprises a hexahydro‐2,6‐methanobenzofuran‐7‐one cage, and compound 5 consists of a hexahydro‐2H‐2,8‐epoxychromene scaffold. The C1?C30 linkage in 1 – 3 and the C3?C30 connection in 4 form two unprecedented types of ring A/B‐fused carbobicyclic cores: viii and ix . The oxidative cleavage of the C2?C3 bond in 5 and heterocyclization in 4 and 5 constitute the unprecedented tricyclic 6/6/5 ring A/B1/B2‐ and 6/5/6 ring A1A2/B‐fused topologies, respectively, which are uncovered, for the first time, in the construction of limonoid architectures. The diverse cyclization patterns of 1 – 6 reveal an unparalleled structural plasticity of rings A and B in limonoid biosynthesis.  相似文献   

18.
The first bioinspired total syntheses of (?) kravanhins A and C were accomplished from a labdane diterpenoid derivative. The key reactions involve a photooxidation and a one‐pot sequential aldol cyclization and lactonization, which provide a new plausible biosynthetic pathway for the kravanhins and other symbiotic members.  相似文献   

19.
The Pseudomonas virulence factor (pvf) operon is essential for the biosynthesis of two very different natural product scaffolds: the (dihydro)pyrazine-N-oxides and the diazeniumdiolate, valdiazen. PvfB is a member of the non-heme diiron N-oxygenase enzyme family that commonly convert anilines to their nitroaromatic counterparts. In contrast, we show that PvfB catalyzes N-oxygenation of the α-amine of valine, first to the hydroxylamine and then the nitroso, while linked to the carrier protein of PvfC. PvfB modification of PvfC-tethered valine was observed directly by protein NMR spectroscopy, establishing the intermediacy of the hydroxylamine. This work reveals a central role for PvfB in the biosynthesis of (dihydro)pyrazine-N-oxides and valdiazen.  相似文献   

20.
l ‐4‐Chlorokynurenine (l ‐4‐Cl‐Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l ‐tryptophan into l ‐4‐Cl‐Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ‐490. We used genetic, biochemical, structural, and analytical techniques to establish l ‐4‐Cl‐Kyn biosynthesis, which is initiated by the flavin‐dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3‐dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号