首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multicellular biology is dependent on the control of cell–cell interactions. These concepts have begun to be exploited for engineering of cell-based therapies. Herein, we detail the use of a multivalent lipidated scaffold for the rapid and reversible manipulation of cell–cell interactions. Chemically self-assembled nanorings (CSANs) are formed via the oligomerization of bivalent dihydrofolate reductase (DHFR2) fusion proteins using a chemical dimerizer, bis-methotrexate. With targeting proteins fused onto the DHFR2 monomers, the CSANs can target specific cellular antigens. Here, anti-EGFR or anti-EpCAM fibronectin-DHFR2 monomers incorporating a CAAX-box sequence were enzymatically prenylated, then assembled into the corresponding CSANs. Both farnesylated and geranylgeranylated CSANs efficiently modified the cell surface of lymphocytes and remained bound to the cell surface with a half-life of >3 days. Co-localization studies revealed a preference for the prenylated nanorings to associate with lipid rafts. The presence of antigen targeting elements in these bifunctional constructs enabled them to specifically interact with target cells while treatment with trimethoprim resulted in rapid CSAN disassembly and termination of the cell–cell interactions. Hence, we were able to determine that activated PBMCs modified with the prenylated CSANs caused irreversible selective cytotoxicity toward EGFR-expressing cells within 2 hours without direct engagement of CD3. The ability to disassemble these nanostructures in a temporally controlled manner provides a unique platform for studying cell–cell interactions and T cell-mediated cytotoxicity. Overall, antigen-targeted prenylated CSANs provide a general approach for the regulation of specific cell–cell interactions and will be valuable for a plethora of fundamental and therapeutic applications.

Multicellular biology is dependent on the control of cell-cell interactions. The prenylated antigen-targeted CSANs provide a general approach for the regulation of specific cell-cell interactions and will be valuable for a plethora of fundamental and therapeutic applications.  相似文献   

2.
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.  相似文献   

3.
We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell–cell interactions to generate three‐dimensional (3D) tissue structures applied to stem‐cell differentiation, cell‐surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome‐fusion and ‐delivery method to create dynamic, electroactive, and switchable cell‐tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label‐free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand.  相似文献   

4.
《Chemphyschem》2003,4(3):268-275
A generic method is described for the reversible immobilization of polyhistidine‐bearing polypeptides and proteins on attenuated total reflecting (ATR) sensor surfaces for the detection of biomolecular interactions by FTIR spectroscopy. Nitrilotriacetic acid (NTA) groups are covalently attached to self‐assembled monolayers of either thioalkanes on gold films or mercaptosilanes on silicon dioxide films deposited on germanium internal reflection elements. Complex formation between Ni2+ ions and NTA groups activates the ATR sensor surface for the selective binding of polyhistidine sequences. This approach not only allows a stable and reversible immobilization of histidine‐tagged peptides (His–peptides) but also simultaneously allows the direct in situ quantification of surface‐adsorbed molecules from their specific FTIR spectral bands. The surface concentrations of both NTA and His–peptide on silanized surfaces were determined to be 1.1 and 0.4 molecules nm?2, respectively, which means that the surface is densely covered. A comparison of experimental FTIR spectra with simulated spectra reveals a surface‐enhancement effect of one order of magnitude for the gold surfaces. With the presented sensor surfaces, new ways are opened up to investigate, in situ and with high sensitivity and reproducibility, protein–ligand, protein–protein, protein–DNA interactions, and DNA hybridization by ATR–FTIR spectroscopy.  相似文献   

5.
A cytocompatible method of surface‐initiated, activator regenerated by electron transfer, atom transfer radical polymerization (SI‐ARGET ATRP) is developed for engineering cell surfaces with synthetic polymers. Dopamine‐based ATRP initiators are used for both introducing the ATRP initiator onto chemically complex cell surfaces uniformly (by the material‐independent coating property of polydopamine) and protecting the cells from radical attack during polymerization (by the radical‐scavenging property of polydopamine). Synthetic polymers are grafted onto the surface of individual yeast cells without significant loss of cell viability, and the uniform and dense grafting is confirmed by various characterization methods including agglutination assay and cell‐division studies. This work will provide a strategic approach to the generation of living cell–polymer hybrid structures and open the door to their application in multitude of areas, such as sensor technology, catalysis, theranostics, and cell therapy.  相似文献   

6.
Butelase‐mediated ligation (BML) can be used to modify live bacterial cell surfaces with diverse cargo molecules. Surface‐displayed butelase recognition motif NHV was first introduced at the C‐terminal end of the anchoring protein OmpA on E. coli cells. This then served as a handle of BML for the functionalization of E. coli cell surfaces with fluorescein and biotin tags, a tumor‐associated monoglycosylated peptide, and mCherry protein. The cell‐surface ligation reaction was achieved at low concentrations of butelase and the labeling substrates. Furthermore, the fluorescein‐labeled bacterial cells were used to show the interactions with cultured HeLa cells and with macrophages in live transgenic zebrafish, capturing the latter's powerful phagocytic effect in action. Together these results highlight the usefulness of butelase 1 in live bacterial cell surface engineering for novel applications.  相似文献   

7.
On‐surface synthesis constitutes a rapidly growing field of research due to its promising application for creating stable molecular structures on surfaces. While self‐assembled structures rely on reversible interactions, on‐surface synthesis provides the potential for creating long‐term stable structures with well‐controlled properties, for example superior electron transport for future molecular electronic devices. On‐surface synthesis holds the promise for preparing insoluble compounds that cannot be produced in solution. Another highly exciting aspect of on‐surface synthesis is the chance to discover new reaction pathways due to the two‐dimensional confinement of the reaction educts. In this review, we discuss the current state‐of‐the‐art and classify the reactions that have been successfully performed so far. Special emphasis is put on electrically insulating surfaces, as these substrates pose particular challenges for on‐surface synthesis while at the same time bearing high potential for future use, for example, in molecular electronics.  相似文献   

8.
Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and obviates the use of harsh ligation conditions that could denature fragile proteins. In the work presented here, reversible supramolecular immobilization of proteins on lipid bilayer surfaces was achieved by using the host–guest interaction of the macrocyclic molecule cucurbit[8]uril. A fluorescent protein was successfully immobilized on the lipid bilayer by making use of the property of cucurbit[8]uril to host together a methylviologen and the indole of a tryptophan positioned on the N‐terminal of the protein. The supramolecular complex was anchored to the bilayer through a cholesterol moiety that was attached to the methylviologen tethered with a small polyethylene glycol spacer. Protein immobilization studies using a quartz crystal microbalance (QCM) showed the assembly of the supramolecular complexes on the bilayer. Specific immobilization through the protein N‐terminus is more efficient than through protein side‐chain events. Reversible surface release of the proteins could be achieved by washing with cucurbit[8]uril or buffer alone. The described system shows the potential of supramolecular assembly of proteins and provides a method for site‐specific protein immobilization under mild conditions in a reversible manner.  相似文献   

9.
To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.  相似文献   

10.
Poly(N‐isopropylacrylamide) (PIPAAm), which is a well‐known temperature‐responsive polymer, is modified on substrates by various methods. At 37 °C, PIPAAm modified surface is hydrophobic and allows cells to adhere to and proliferate on the surface. By reducing temperature below the lower critical solution temperature of PIPAAm, the surface turns to hydrophilic and allows cells to detach themselves from the surface spontaneously. With this technology, cell sheet engineering is established several years ago. This review focuses on the preparations and characteristics of PIPAAm‐modified surfaces, and discusses the effect of surface properties on cell adhesion and deadhesion. In addition, the recent improvement of PIPAAm‐modified surfaces for cell culture and the clinical applications of cell sheets harvested from the surfaces are also mentioned. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 917–926  相似文献   

11.
This work reported a comparative analysis of the amperometric responses of antigen‐antibody reactions on two stable chiral surfaces which were modified with 1,2‐diphenylethylenediamine enantiomers. Alpha‐fetoprotein antibody and antigen (anti‐AFP and AFP) were selected as model systems. First, (1R,2R)‐1,2‐diphenylethylenediamine or (1S,2S)‐1,2‐diphenylethylenediamine was modified on the gold surface of the electrode through amide linkage to construct chiral surfaces. Then, anti‐AFP was immobilized on the chiral electrode surface by electrostatic and hydrogen bonding interactions. The electrochemical characteristics of the modified electrodes were studied via cyclic voltammetry. The selective current responses of antigen‐antibody reactions on chiral electrode surfaces for different incubation time and varying AFP concentrations were monitored. The antigen‐antibody reactions were greatly influenced by the chirality of 1,2‐diphenylethylenediamine enantiomers, and the amperometric responses obtained from the (1S,2S)‐1,2‐diphenylethylenediamine modified electrode was obviously stronger than that from the (1R,2R)‐1,2‐diphenylethylenediamine modified electrode. Such work may not only offer valuable reference to the research of chiral drugs, but also help to comprehend the high selectivity of chiral molecular species in biosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A Pd2Co precursor, [Et3NH]2[CoPd2(μ‐4‐I‐3,5‐Me2pz)4Cl4], was used to synthesize palladium–cobalt nanorings and nanoparticles on highly ordered pyrolytic graphite (HOPG) surface. Different types of nanostructures were formed on HOPG surfaces and were controlled by relative humidity (%RH). These structures included Pd2Co nanorings on HOPG surface by self‐assembly with humidity control. The %RH affects the size and dispersion of the self‐formation of the Pd2Co rings on HOPG surfaces. The modified HOPG surface with Pd2Co precursor at 80%RH has rings of similar sizes, while modification at 76%RH gives well‐formed rings and 70%RH with smaller diameters. After thermal reduction of the Pd2Co precursor on HOPG, bimetallic nanostructures were formed. X‐ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy with energy‐dispersive X‐ray fluorescence spectroscopy techniques were employed to study the composition and morphology of the nanostructures formations on the HOPG surface. Electrochemical characterization of the Pd2Co nanostructures was performed. Moreover, the bimetallic catalyst has electrocatalytic activity for the oxygen reduction reaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Our study first focus on two types of corrole dimers oxidized and reduced forms on highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and contact angle measurement (CAM) were used to investigate the self‐assembled monolayers of corrole dimers adsorbed on HOPG surfaces at room temperature in air. XPS and CAM results have confirmed both two molecules adsorbed on an HOPG surface and formed self‐assembled films, and STM experiments found that the corrole dimers adsorbed on HOPG surfaces form similar lobes. The different stable space structure of the oxidized form molecule (OFM) and reduced form molecule (RFM), led to the diversity of the tetramer structural dimensions. The occurrence of molecular aggregations and assembly was controlled by the interactions between molecular–molecular and molecule–substrate. The electrostatic interactions between the molecules control the geometrical sizes and molecule–substrate interactions determine topographical shapes of the self‐assembled corrole dimers on HOPG surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force‐free approach to measuring molecular‐level interaction through surface‐water diffusivity, different mussel foot proteins were found to have different abilities to evict hydration layers from surfaces—a necessary step for adsorption and adhesion. It was anticipated that DOPA would mediate dehydration owing to its efficacy in bioinspired wet adhesion. Instead, hydrophobic side chains were found to be a critical component for protein–surface intimacy. This direct measurement of interfacial water dynamics during force‐free adsorptive interactions at solid surfaces offers guidance for the engineering of wet adhesives and coatings.  相似文献   

15.
In this study, an epitope‐imprinting strategy was employed for the dynamic display of bioactive ligands on a material interface. An imprinted surface was initially designed to exhibit specific affinity towards a short peptide (i.e., the epitope). This surface was subsequently used to anchor an epitope‐tagged cell‐adhesive peptide ligand (RGD: Arg‐Gly‐Asp). Owing to reversible epitope‐binding affinity, ligand presentation and thereby cell adhesion could be controlled. As compared to current strategies for the fabrication of dynamic biointerfaces, for example, through reversible covalent or host–guest interactions, such a molecularly tunable dynamic system based on a surface‐imprinting process may unlock new applications in in situ cell biology, diagnostics, and regenerative medicine.  相似文献   

16.
Wet chemical synthesis of covalent III‐V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface–ligand interactions. We report a simple acid‐free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral‐shaped InP CQDs covered with cation‐rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In‐rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8‐electron rule. This halide–amine co‐passivation strategy will benefit the synthesis of stable III‐V CQDs with controlled surfaces.  相似文献   

17.
In situ photoelastic‐modulated Fourier transform infrared reflection absorption spectroscopy has been applied for the investigation of interfacial stability of organothiol and organosilane monolayer films on nanocrystalline zinc oxide thin films. It has been shown that for octadecyltriethoxysilane films, exposure to high water activities results in physisorption of water in the cross‐linked film. This high water activity at the interface leads to a reversible wet de‐adhesion of the interfacial silanol groups from the ZnO surface. However, the organothiol seems to form a denser monolayer and a stable by S–Zn bond that is resistant to the competition with adsorbed water. The reversible attachment for cross‐linked organosilanol films has been demonstrated for the first time by means of an in situ spectroscopic method on model ZnO surfaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Many biological processes, such as stem cell differentiation, wound healing and development, involve dynamic interactions between cells and their microenvironment. The ability to control these dynamic processes in vitro would be potentially useful to fabricate tissue engineering constructs, study biological processes, and direct stem cell differentiation. In this paper, we used a parylene-C microstencil to develop two methods of creating patterned co-cultures using either static or dynamic conditions. In the static case, embryonic stem (ES) cells were co-cultured with fibroblasts or hepatocytes by using the reversible sealing of the stencil on the substrate. In the dynamic case, ES cells were co-cultured with NIH-3T3 fibroblasts and AML12 hepatocytes sequentially by engineering the surface properties of the stencil. In this approach, the top surface of the parylene-C stencil was initially treated with hyaluronic acid (HA) to reduce non-specific cell adhesion. The stencil was then sealed on a substrate and seeded with ES cells which adhered to the underlying substrate through the holes in the membrane. To switch the surface properties of the parylene-C stencils to cell adhesive, collagen was deposited on the parylene-C surfaces. Subsequently, a second cell type was seeded on the parylene-C stencils to form a patterned co-culture. This group of cells was removed by peeling off the parylene-C stencils, which enabled the patterning of a third cell type. Although the static patterned co-culture approach has been demonstrated previously with a variety of methods, layer-by-layer modification of microfabricated parylene-C stencils enables dynamic patterning of multiple cell types in sequence. Thus, this method is a promising approach to engineering the complexity of cell-cell interactions in tissue culture in a spatially and temporally regulated manner.  相似文献   

19.
To be used successfully in continuous reactor systems, enzymes must either be retained using filtration membranes or immobilized on a solid component of the reactor. Whereas the first approach requires large amounts of energy, the second approach is limited by the low temporal stability of enzymes under operational conditions. To circumvent these major stumbling blocks, we have developed a strategy that enables the reversible supramolecular immobilization of bioactive enzyme–polymer conjugates at the surface of filtration membranes. The polymer is produced through a reversible addition–fragmentation transfer method; it contains multiple adamantyl moieties that are used to bind the resulting conjugate at the surface of the membrane which has surface‐immobilized cyclodextrin macrocycles. This supramolecular modification is stable under operational conditions and allows for efficient biocatalysis, and can be reversed by competitive host–guest interactions.  相似文献   

20.
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new “identity” and determine their biological fate. Protein–nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non‐covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide‐co‐ε‐caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol‐ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol‐ene reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号