首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

2.
Surface‐confined atom transfer radical polymerization was used to prepare gold nanoparticle–poly(methyl methacrylate) core–shell particles at elevated temperature. First, gold nanoparticles were prepared by the one‐pot borohydride reduction of tetrachloroaurate in the presence of 11‐mercapto‐1‐undecanol (MUD). MUD‐capped gold nanoparticles were then exchanged with 3‐mercaptopropyltrimethoxysilane (MPS) to prepare a self‐assembled monolayer (SAM) of MPS on the gold nanoparticle surfaces and subsequently hydrolyzed with hydrochloric acid. The extent of exchange of MUD with MPS was determined by NMR. The resulting crosslinked silica‐primer layer stabilized the SAM of MPS and was allowed to react with the initiator [(chloromethyl)phenylethyl] trimethoxysilane. Atom transfer radical polymerization was conducted on the Cl‐terminated gold nanoparticles with the CuCl/2,2′‐bipyridyl catalyst system at elevated temperature. The rates of polymerization with the initiator‐modified gold nanoparticles exhibited first‐order kinetics with respect to the monomer, and the number‐average molecular weight of the cleaved graft polymer increased linearly with the monomer conversion. The presence of the polymer on the gold nanoparticle surface was identified by Fourier transform infrared spectroscopy and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3631–3642, 2005  相似文献   

3.
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 Vrms). The nanoprobe is fabricated using room temperature self‐assembly methods, without the need for nanoresolution lithography. The nanoprobe (150–500 nm in diameter, 2–150 μm in length) is mounted on the end of a glass micropipette, enabling user‐specified positioning. The nanoprobe is one electrode within a point‐and‐plate configuration, with an indium–tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro‐hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m).  相似文献   

4.
Janus composite particles with a combination of organic and inorganic substances were synthesized by soap-free emulsion polymerization in which an amphoteric initiator of 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was employed to introduce a polystyrene (PSt) lobe onto silica cores surface-modified with 3-methacryloxypropyltrimethoxy silane (MPTMS). Thermogravimetric analysis and X-ray photoelectron spectroscopy were used to characterize the surface-modified silica particles and showed that a small amount of MPTMS introduced onto the surface of silica particles could successfully prepare SiO2–PSt Janus particles. The oxide part of SiO2–PSt Janus particles obtained with the polymerization was further surface-modified with 3-aminopropyltriethoxysilane (APS) to introduce positively charged amino groups on the silica surface. The silica surface modified with APS was covered with gold by electroless deposition in which a gold precursor of auric chloride was reduced with ascorbic acid in the presence of polyvinylpyrrolidone. The electroless deposition of gold successfully produced Janus particles with a combination of gold and PSt surfaces. Furthermore, dissolution of the polymer component of the Au–PSt Janus particles in tetrahydrofuran led to another Janus type of particles with an inorganic combination of Au and SiO2.  相似文献   

5.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

6.
Monodisperse silica particles with average diameters of 1.9–2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self‐assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin‐modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin‐modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π–π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C60 and C70 were also well separated by ultra‐high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin‐modified silica stationary phase shows ultra‐high efficiency compared with the commercial C18‐silica high‐performance liquid chromatography stationary phase with average diameters of ∼5 μm.  相似文献   

7.
In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high‐performance liquid chromatography. The new stationary phase could be used in both reversed‐phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π‐electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero‐dimensional GNPs.  相似文献   

8.
A key step in cytochrome P450 catalysis includes the spin‐state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin‐state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen‐bonding interactions on the electronic structure of a five‐coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen‐bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations.  相似文献   

9.
10.
利用水热法合成了两种新型的二维(2D)稀土配位聚合物[Ln(PDC)(OH)(H2O)2]n (Ln = Eu (1) and Tb (2), H2PDC = 3,4-吡啶二羧酸),通过元素分析、红外光谱、热分析和X射线单晶衍射等技术对其进行了表征。单晶结构分析表明这两种配合物都显示出包含有一维Ln-O-Ln链的二维层状结构,层间又进一步通过 π-π 堆积和氢键作用扩展成三维超分子网络结构。此外,这两种配合物的固体在室温下都有强的荧光发射。  相似文献   

11.
Introduction of competing interactions in the design of a supramolecular polymer (SP) creates pathway complexity. Ester–bis‐ureas contain both a strong bis‐urea sticker that is responsible for the build‐up of long rod‐like objects by hydrogen bonding and ester groups that can interfere with this main pattern in a subtle way. Spectroscopic (FTIR and CD), calorimetric (DSC), and scattering (SANS) techniques show that such ester–bis‐ureas self‐assemble into three competing rod‐like SPs. The previously unreported low‐temperature SP is stabilized by hydrogen bonds between the interfering ester groups and the urea moieties. It also features a weak macroscopic alignment of the rods. The other structures form isotropic dispersions of rods stabilized by the more classical urea‐urea hydrogen bonding pattern. The transition from the low‐temperature structure to the next occurs reversibly by heating and is accompanied by an increase in viscosity, a rare feature for solutions in hydrocarbons.  相似文献   

12.
The piezoelectric quartz crystal(PQC)impedance analyzer was used to monitor in situ the generation of monodisperse silica particles during the hydrolysis of tetraethyl orthosilicate (TEOS) and their adsorption onto and Au electrode in alcohol solutions containing water(6-15mol/L)and ammonia(0.2-2.0 mol/L).The equivalent circuit parameters,the resonance frequencies and the half-peak width values of the conductance spectra of the PQC resonance were obtained.The resonant frequency decreased notably while the motional resistance changed very slightly(within 1Ω during the hydrolysis reaction,suggesting that the mass effect dominated the adsorption of generated monodisperse silica particles on the gold electrode in this system.Changes in f0 indicated that the ammonia concentration affected the hydrolytic reaction obviously,and the influence of water concentration on the reaction was small while the water was significantly excessive.Kinetics of monodisperse silica particle adsorption occurring at the electrode i solution interface was analyzed using a first-order reaction scheme.In addition,the electrolyte-induced precipitation of the monodisperse silica of adsorbed particles per area and the converge of monodisperse silica particles were obtained from scanning electron nicroscope(SEM)observations.  相似文献   

13.
Thermal stability of facetted Pt nanocrystals on amorphous silica support films was investigated using in situ transmission electron microscopy in a temperature range between 25 and 800 degrees C. The particles started to change their shapes at approximately 350 degrees C. Above 500 degrees C, the particles spread on the support film with increasing temperature, rather than becoming more spherical. Such temperature-induced wetting of Pt nanoparticles on silica surface can be attributed to the interfacial mixing of Pt and SiO(2) and the resulting negative interface energy.  相似文献   

14.
In this study, a facile strategy for the preparation of thermo‐ and pH‐responsive nanogels through reversible addition–fragmentation transfer (RAFT) crosslinking copolymerization of ionic liquid‐based monomers is demonstrated. The use of chain transfer agents (CTAs) containing carboxyl group in the RAFT polymerizations is the key to producing highly thermoresponsive nanogels. Experimental results demonstrate that the critical gelation temperature of the as‐prepared nanogels can be tuned by adjusting the feed ratio of monomer and CTA. Variable temperature Fourier transform infrared measurements and control experiments indicate that hydrogen‐bonding interactions between the carboxyl groups of CTAs are responsible for the thermoresponsive behaviors of poly(ionic liquid) (PIL)‐based nanogels. Furthermore, PIL‐based nanogels are also found to be pH‐sensitive, and can be further decorated by poly(N‐isopropylacrylamide) (PNIPAAm) via surface grafting polymerization. PNIPAAm‐grafted nanogel aqueous solutions can be reversibly transformed into macrogels upon a change in temperature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 169–178  相似文献   

15.
《Electroanalysis》2003,15(21):1667-1676
Electrochemical techniques and lateral friction microscopy (LFM) are exploited to characterize the deposition of gold metal particles onto the 3‐dimensional (3‐D) polypyrrole (PPy) film deposited on 2‐dimensional (2‐D) highly oriented pyrolytic graphite (HOPG) substrate surface in an aqueous solution involving 0.01 M pyrrole and 0.1 M LiClO4? 3H2O. Cyclic voltammetry is utilized to find the gold deposition potential onto the PPy film from 0.001 M KAu(CN)2/KOH solution. The gold deposition potential is found to be in the range of ?1.2 V to ?1.4 V. Chronoamperometry is used to find out the nucleation and growth mechanism of gold metal particles onto PPy film. When the PPy film is thin, the mechanism follows the 3‐D instantaneous and moved towards 3‐D progressive as the film thickness increases. Considering the high resistance of thick PPy film and insulating and compact nature of the film at more cathodic potentials, it is suggested that the gold nuclei are formed first on the HOPG substrate surface, move to the PPy film surface and then distributed inside the PPy matrix. Since the friction of gold and the PPy film is different, the LFM is found to be an effective tool to see the distribution of gold particles in the domain boundaries of the PPy film.  相似文献   

16.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Prepared via Stöber-type sol–gel routes were three types of silica particles of <1 μm in size: pure silica, Ca-involving silica, and chitosan/alginate-coated silica with a polymershell-silica core structure. Calcium ions were impregnated in the organic layers of the polymer-coated silica particle. The sol–gel procedure was applied to tetraethoxysilane dissolved in an ethanol/water mixture, while Ca–silica was derived from CaCl2-containing ethanol/water solutions. Scanning and transmission electron micrograph analyses indicated that those silica particles consisted of ~10 nm primary particles, the Ca–silica particles (~500 nm) were larger than the Ca-free ones (~200 nm) and that their size increased with the Ca concentration in the precursor solutions. From 1H- and 29Si- magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra and 29Si cross-polarization NMR spectra, the mechanism of primary particle agglomeration and degradation of the secondary particles in saline were discussed in terms of the content of H2O molecules and >Si–OH as well as hydrogen bonding interactions among them. In addition, the Ca–silica and core-shell silica deposited apatite in Kokubo’s simulated body fluid. Thus, the present Ca–silica and polymer-coated silica particles were suggested to be applicable to injectable bone fillers for bone generation.  相似文献   

18.
Silica particles functionalized with quaternary ammonium groups were prepared by interpenetrating polyethylenimine (PEI) into silica particles and crosslinking with diiodopentane, followed by octyliodide alkylation and methyliodide quaternarization (S‐QA‐PEI). The synthesized S‐QA‐PEI particles were identified with a slight particle size increase of 2–3 µm. Different ratios of PEI:silica particles were prepared and analyzed. While silica particles are negatively charged, ?16.7 ± 5.11 mV, the prepared S‐QA‐PEI particles are positively charged, +50–60 mV. These particles were embedded in poly(ethylene vinyl acetate) and poly(ethylene methacrylic acid) coatings which exhibited strong antibacterial activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Switchable surface redox chemistry is demonstrated in gold@iron/iron oxide core–shell nanoparticles with ambient oxidation and plasmon‐mediated reduction to modulate the oxidation state of shell layers. The iron shell can be oxidized to iron oxide through ambient oxidation, leading to an enhancement and red‐shift of the gold surface plasmon resonance (SPR). This enhanced gold SPR can drive reduction of the iron oxide shell under broadband illumination to reversibly blue‐shift and significantly dampen gold SPR absorption. The observed phenomena provide a unique mechanism for controlling the plasmonic properties and surface chemistry of small metal nanoparticles.  相似文献   

20.
This article presents a simple and facile method to fabricate thermoresponsive polymer‐grafted silica particles by direct surface‐initiated photopolymerization of N‐isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol‐functionalized particles (~48 nm) as well as to larger particles (~692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor‐made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1260–1267  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号