共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbon Monoxide Oxidation by Polyoxometalate‐Supported Gold Nanoparticulate Catalysts: Activity,Stability, and Temperature‐ Dependent Activation Properties 下载免费PDF全文
Dr. Takuya Yoshida Prof. Dr. Toru Murayama Prof. Dr. Norihito Sakaguchi Prof. Dr. Mitsutaka Okumura Prof. Dr. Tamao Ishida Prof. Dr. Masatake Haruta 《Angewandte Chemie (International ed. in English)》2018,57(6):1523-1527
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions. 相似文献
3.
Dr. Rosaria Ciriminna Dr. Ermelinda Falletta Prof. Cristina Della Pina Dr. Joaquim Henrique Teles Dr. Mario Pagliaro 《Angewandte Chemie (International ed. in English)》2016,55(46):14210-14217
Gold catalysis has recently found its first large‐scale applications in the chemical industry. This Minireview provides a critical analysis of the success factors and of the main obstacles that had to be overcome on the long way from the discovery to the commercialization of gold catalysts. The insights should be useful to researchers in both academia and industry working on the development of tomorrow's gold catalysts to tackle significant environmental and economic issues. 相似文献
4.
5.
6.
Trinuclear Gold Clusters Supported by Cyclic (alkyl)(amino)carbene Ligands: Mimics for Gold Heterogeneous Catalysts 下载免费PDF全文
Dr. Liqun Jin David S. Weinberger Dr. Mohand Melaimi Dr. Curtis E. Moore Prof. Arnold L. Rheingold Prof. Guy Bertrand 《Angewandte Chemie (International ed. in English)》2014,53(34):9059-9063
The synthesis of air‐ and moisture‐stable trinuclear mixed‐valence gold(I)/gold(0) clusters is described. They promote the catalytic carbonylation of amines under relatively mild conditions. The synthetic route leading to the trinuclear clusters involves a simple ligand exchange from the readily available μ3‐oxo‐[(Ph3PAu)3O]+ complex. This synthetic method paves the way for the preparation of a variety of mixed‐valence gold(I)/gold(0) polynuclear clusters. Moreover, the well‐defined nature of the complexes demonstrates that the catalytic process involves a rare example of a definite change of oxidation state of gold from Au02AuI to AuI3. 相似文献
7.
8.
9.
Julia Holz Camilla Pfeffer Hualiang Zuo Dennis Beierlein Gunther Richter Elias Klemm Ren Peters 《Angewandte Chemie (International ed. in English)》2019,58(30):10330-10334
Gold nanoparticle catalysts are important in many industrial production processes. Nevertheless, for traditional C ?C cross‐coupling reactions they have been rarely used and Pd catalysts usually give a superior performance. Herein we report that in situ formed gold metal nanoparticles are highly active catalysts for the cross coupling of allylstannanes and activated alkylbromides to form C ?C bonds. Turnover numbers up to 29 000 could be achieved in the presence of active carbon as solid support, which allowed for convenient catalyst recovery and reuse. The present study is a rare case where a gold metal catalyst is superior to Pd catalysts in a cross‐coupling reaction of an organic halide and an organometallic reagent. 相似文献
10.
11.
Size of Gold Nanoparticles Driving Selective Amide Synthesis through Aerobic Condensation of Aldehydes and Amines 下载免费PDF全文
Dr. Hiroyuki Miyamura Hyemin Min Dr. Jean‐François Soulé Prof. Dr. Shū Kobayashi 《Angewandte Chemie (International ed. in English)》2015,54(26):7564-7567
Metal nanoparticles (NPs) have attracted much attention in many fields due to their intrinsic characteristics. It is generally accepted that smaller NPs (1.5–3 nm) are more active than larger NPs, and reverse cases are very rare. We report here the direct aerobic oxidative amide synthesis from aldehydes and amines catalyzed by polymer‐incarcerated gold (Au) NPs. A unique correlation between imine/amide selectivity and size of NPs was discovered; Au‐NPs of medium size (4.5–11 nm) were found to be optimal. High yields were obtained with a broad range of substrates, including primary amines. Au‐NPs of medium size could be recovered and reused several times without loss of activity, and they showed good activity and selectivity in amide formation from alcohols and amines. 相似文献
12.
13.
Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite‐supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate‐to‐excellent substrate conversions (43–100 %) and product yields (66–99 %) (19 examples). Oxidation of N‐substituted 1,2,3,4‐tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83–93 %) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o‐phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N‐benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol “AuNPs/C+O2” can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4‐dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4‐tetrahydroisoquinoline in a one‐pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen‐transfer reaction from amine to metal and oxidation of M‐H is proposed. 相似文献
14.
15.
16.
Gold catalysis 总被引:1,自引:0,他引:1
Catalysis by gold has rapidly become a hot topic in chemistry, with a new discovery being made almost every week. Gold is equally effective as a heterogeneous or a homogeneous catalyst and in this Review we attempt to marry these two facets to demonstrate this new found and general efficacy of gold. The latest discoveries are placed within a historical context, but the main thrust is to highlight the new catalytic possibilities that gold-catalyzed reactions currently offer the synthetic chemist, in particular in redox reactions and nucleophilic additions to pi systems. Indeed gold has proved to be an effective catalyst for many reactions for which a catalyst had not been previously identified, and many new discoveries are still expected. 相似文献
17.
Buonerba A Cuomo C Sánchez SO Canton P Grassi A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(2):709-715
The controlled synthesis of gold nanoparticles (AuNPs), incarcerated in a semicrystalline nanoporous polymer matrix that consisted of a syndiotactic polystyrene-co-cis-1,4-polybutadiene multi-block copolymer is described. This catalyst was successfully tested in the oxidation of primary and secondary alcohols, in which we used dioxygen as the oxidant under mild conditions. Accordingly, (±)-1-phenylethanol was oxidised to acetophenone in high yields (96%) in 1 h, at 35 °C, whereas benzyl alcohol was quantitatively oxidised to benzaldehyde with a selectivity of 96% in 6 h. The specific rate constants calculated from the corresponding kinetic plots were among the highest found for polymer-incarcerated AuNPs. Similar values in terms of reactivity and selectivity were found in the oxidation of primary alcohols, such as cinnamyl alcohol and 2-thiophenemethanol, and secondary alcohols, such as indanol and α-tetralol. The remarkable catalytic properties of this system were attributed to the formation, under these reaction conditions, of the nanoporous ε crystalline form of syndiotactic polystyrene, which ensures facile and selective accessibility for the substrates to the gold catalyst incarcerated in the polymer matrix. Moreover, the polymeric crystalline domains produced reversible physical cross-links that resulted in reduced gold leaching and also allowed the recovery and reuse of the catalyst. A comparison of catalytic performance between AuNPs and annealed AuNPs suggested that multiple twinned defective nanoparticles of about 9 nm in diameter constituted the active catalyst in these oxidation reactions. 相似文献
18.
Mónica García‐Mota Noemí Cabello Dr. Feliu Maseras Prof. Antonio M. Echavarren Prof. Javier Pérez‐Ramírez Prof. Nuria Lopez Dr. 《Chemphyschem》2008,9(11):1624-1629
The development of new sustainable chemical processes requires the implementation of ultra‐selective reaction processes. The enormous selectivity found for gold‐based catalysts when applied in several reactions has opened new frontiers. For instance, the selective activation of alkynes is a common feature for both homogeneous and heterogeneous gold catalysts. Herein, we employ experimental and theoretical methods to assess the similarities and differences in the performance of homogeneous and heterogeneous gold catalysts. Alkynophilicity, the selective activation of alkynes, is found to have a thermodynamic origin in the heterogeneous case and a kinetic one for homogeneous catalysis. Complex enyne rearrangements require the more active homogeneous (single gold) catalyst because it has more electrophilic character than its heterogeneous (nanoparticle) counterpart. 相似文献
19.
Dr. Roberto Martin Dr. Sergio Navalon Dr. Juan Jose Delgado Dr. Jose J. Calvino Prof. Mercedes Alvaro Prof. Hermenegildo Garcia 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(34):9494-9502
The catalytic activity of diamond‐supported gold nanoparticle (Au/D) samples prepared by the deposition/precipitation method have been correlated as a function of the pH and the reduction treatment. It was found that the most active material is the one prepared at pH 5 followed by subsequent thermal treatment at 300 °C under hydrogen. TEM images show that Au/D prepared under optimal conditions contain very small gold nanoparticles with sizes below 2 nm that are proposed to be responsible for the catalytic activity. Tests of productivity using large phenol (50 g L ?1) and H2O2 excesses (100 g L ?1) and reuse gives a minimum TON of 458,759 moles of phenol degraded per gold atom. Analysis of the organic compounds extracted from the deactivated solid catalyst indicates that the poisons are mostly hydroxylated dicarboxylic acids arising from the degradative oxidation of the phenyl ring. By determining the efficiency for phenol degradation and the amount of O2 evolved two different reactions of H2O2 decomposition (the Fenton reaction at acidic pH values and spurious O2 evolution at basic pH values) are proposed for Au/D catalysis. The activation energy of the two processes is very similar (ranging between 30 and 35 kJ mol?1). By using dimethylsulfoxide as a radical scavenger and N‐tert‐butyl‐α‐phenylnitrone as a spin trap under aerated conditions, the EPR spectrum of the expected PBN? OCH3 adduct was detected, supporting the generation of HO., characteristic of Fenton chemistry in the process. Phenol degradation, on the other hand, exhibits the same activation energy as H2O2 decomposition at pH 4 (due to the barrierless attack of HO. to phenol), but increases the activation energy gradually up to about 90 kJ mol?1 at pH 7 and then undergoes a subsequent reduction as the pH increases reaching another minimum at pH 8.5 (49 kJ mol?1). 相似文献