共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dr. Yuxi Xu Zhaoyang Lin Dr. Xing Zhong Ben Papandrea Prof. Yu Huang Xiangfeng Duan 《Angewandte Chemie (International ed. in English)》2015,54(18):5345-5350
A solvent‐exchange approach for the preparation of solvated graphene frameworks as high‐performance anode materials for lithium‐ion batteries is reported. The mechanically strong graphene frameworks exhibit unique hierarchical solvated porous networks and can be directly used as electrodes with a significantly improved electrochemical performance compared to unsolvated graphene frameworks, including very high reversible capacities, excellent rate capabilities, and superior cycling stabilities. 相似文献
4.
Fei Wang Lin Sun Wenwen Zi Baoxun Zhao Prof. Hongbin Du 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(38):9071-9077
Nanostructured silicon-based materials with porous structures have recently been found to be impressive anode materials with high capacity and cycling performance for lithium-ion batteries. However, the current methods of preparing porous silicon have generally been confronted with the requirement for multiple steps and complex synthesis. In the present study, porous silicon with high surface area was prepared by using a high yielding and simple reaction in which commercial magnesium powder readily reacts with HSiCl3 with the help of an amine catalyst under mild conditions. The obtained porous silicon was coated with a nitrogen-doped carbon layer and used as the anode for lithium-ion batteries. The porous Si-carbon nanocomposites exhibited excellent cycling performance with a retained discharge capacity of 1300 mA h g−1 after 200 cycles at 1 A g−1 and a discharge capacity of 750 mA h g−1 at a current density of 2 A g−1 after 250 cycles. Remarkably, the Coulombic efficiency was maintained at nearly 100 % throughout the measurements. 相似文献
5.
6.
The hierarchical porous nitrogen‐doped carbon materials (HNCs) were prepared by using nitrogen containing gelatin as the carbon source and nano‐silica obtained by a simple flame synthesis approach as the template. All of the as‐obtained HNCs show much higher Li storage capacity as compared with commercial graphite. Specifically, HNC‐700 with biggest micropore volume and highest nitrogen content exhibited optimal reversible capacities of 1084 mAh·g??1 at the current density of 37.2 mA·g?1 (0.1 C) and 309 mAh·g?1 even at 3.72 A·g?1 (10 C). This result suggests that HNCs should be a promising candidate for anode materials in high‐rate lithium ion batteries (LIBs). 相似文献
7.
Facile Synthesis of Porous Mn2O3 Nanoplates and Their Electrochemical Behavior as Anode Materials for Lithium Ion Batteries 下载免费PDF全文
Dr. Yanjun Zhang Dr. Yang Yan Dr. Xueyun Wang Dr. Gen Li Dr. Dingrong Deng Dr. Li Jiang Prof. Chunying Shu Prof. Chunru Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(20):6126-6130
Porous Mn2O3 nanoplates were prepared by a facile polyol solution method combined with a simple post‐annealing process. The porous Mn2O3 nanoplates were characterized by XRD, field‐emission SEM, high‐resolution TEM, and N2 adsorption/desorption isotherm measurements. The formation process for the Mn2O3 nanoplates was proposed as a morphology‐conserved transformation strategy. These porous nanoplates exhibited improved electrochemical performance with excellent cycling stability and good rate capability when applied as anode materials in lithium ion batteries. 相似文献
8.
利用黄麻碳化后的纤维和吡咯单体作为还原剂,高锰酸钾作为氧化剂,通过原位氧化还原反应法合成了碳纤维/MnO/C一维复合物。扫描电子显微镜(SEM)结果显示,MnO/C纳米颗粒分布在碳纤维的外壁上,MnO被包裹在由聚吡咯碳化而来的碳中,MnO/C纳米颗粒大小为50~150 nm。将制备的产物作为锂离子电池负极材料进行充放电测试,结果表明当电流密度为100mA·g~(-1)时,循环50次后仍具有410 mAh·g~(-1)的比容量,同时也展现了良好的倍率性能。 相似文献
9.
多孔硅纳米材料具有巨大的比表面积,可调控的物理化学性质,在药物治疗、传感、能源储存与转化等领域拥有巨大的应用前景。尤其在高能量密度锂离子电池领域,多孔硅由于其丰富的孔道结构能有效释放充放电过程中硅体积变化带来的巨大应力以及大大地缩短锂离子传输距离,而引起了人们的广泛研究兴趣。但是,开发简便快速的方法来合成结构可调变的多孔硅纳米材料仍是当前研究的挑战。近年来,一些用来合成多孔硅纳米材料的方法已有报道。我们基于本课题组最近的研究进展和近年来相关文献,比较详细综述了近年来多孔硅纳米材料的制备方法以及重点关注其在高能锂电池领域的应用。最后,对多孔硅纳米材料的未来发展方向做了进一步的展望。 相似文献
10.
11.
12.
Herein, we report a facile and “green” synthetic route for the preparation of Ge@C core–shell nanocomposites by using a low‐cost Ge precursor. Field‐emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core–shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium‐ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g?1 and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g?1 after repeated cycling at a current density of 800 mA g?1 over 100 cycles. 相似文献
13.
14.
15.
16.
Xiaoyan Wang Dr. Dong Zhao Dr. Chao Wang Dr. Yonggao Xia Wenshuai Jiang Senlin Xia Shanshan Yin Dr. Xiuxia Zuo Dr. Ezzeldin Metwalli Ying Xiao Prof. Dr. Zaicheng Sun Prof. Dr. Jin Zhu Prof. Dr. Peter Müller‐Buschbaum Prof. Dr. Ya‐Jun Cheng 《化学:亚洲杂志》2019,14(9):1557-1569
Super‐small sized TiO2 nanoparticles are in situ co‐composited with carbon and nickel nanoparticles in a facile scalable way, using difunctional methacrylate monomers as solvent and carbon source. Good control over crystallinity, morphology, and dispersion of the nanohybrid is achieved because of the thermosetting nature of the resin polymer. The effects of the nickel nanoparticle on the composition, crystallographic phase, structure, morphology, tap density, specific surface area, and electrochemical performance as both lithium‐ion and sodium‐ion battery anodes are systematically investigated. It is found that the incorporation of the in situ formed nickel nanoparticles with certain content effectively enhances the electrochemical performance including reversible capacities, cyclic stability and rate performance as both lithium‐ion and sodium‐ion battery anodes. The experimental I‐V profiles at different temperatures and theoretical calculations reveal that the charge carriers are accumulated in the amorphous carbon regions, which act as scattering centers to the carriers and lower the carrier mobility for the composite. With increasing nickel content, the mobility of the charge carriers is significantly increased, while the number of the charge carriers maintains almost constant. The nickel nanoparticles provide extra pathways for the accumulated charge, leading to reduced scatterings among the charge carriers and enhanced charge‐carrier transportation. 相似文献
17.
Freeze‐Drying‐Assisted Synthesis of Hierarchically Porous Carbon/Germanium Hybrid for High‐Efficiency Lithium‐Ion Batteries 下载免费PDF全文
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials. 相似文献
18.
Youngjin Kim Kwang‐Ho Ha Prof. Seung M. Oh Prof. Kyu Tae Lee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(38):11980-11992
Na‐ion batteries are an attractive alternative to Li‐ion batteries for large‐scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na‐ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance. 相似文献
19.
Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Three‐Dimensional Porous Composites as High‐Performance Oxygen Evolution Electrocatalysts 下载免费PDF全文
Dr. Tian Yi Ma Prof. Sheng Dai Prof. Mietek Jaroniec Prof. Shi Zhang Qiao 《Angewandte Chemie (International ed. in English)》2014,53(28):7281-7285
A new class of highly efficient oxygen evolution catalysts has been synthesized through the self‐assembly of graphitic carbon nitride nanosheets and carbon nanotubes, driven by π–π stacking and electrostatic interactions. Remarkably, the catalysts exhibit higher catalytic oxygen evolution activity and stronger durability than Ir‐based noble‐metal catalysts and display the best performance among the reported nonmetal catalysts. This good result is attributed to the high nitrogen content and the efficient mass and charge transfer in the porous three‐dimensional nanostructure. 相似文献
20.
Guojun Du Dr. Zhaolin Liu Dr. Siok Wei Tay Prof. Xiaogang Liu Prof. Aishui Yu 《化学:亚洲杂志》2014,9(9):2514-2518
Porous microspherical Li4Ti5O12 aggregates (LTO‐PSA) can be successfully prepared by using porous spherical TiO2 as a titanium source and lithium acetate as a lithium source followed by calcinations. The synthesized LTO‐PSA possess outstanding morphology, with nanosized, porous, and spherical distributions, that allow good electrochemical performances, including high reversible capacity, good cycling stability, and impressive rate capacity, to be achieved. The specific capacity of the LTO‐PSA at 30 C is as high as 141 mA h g?1, whereas that of normal Li4Ti5O12 powders prepared by a sol–gel method can only achieve 100 mA h g?1. This improved rate performance can be ascribed to small Li4Ti5O12 nanocrystallites, a three‐dimensional mesoporous structure, and enhanced ionic conductivity. 相似文献