首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

2.
Two one‐dimensional compounds composed of a 1:1 ratio of MnIII salen‐type complex and NiII oximato moiety with different counter anions, PF6? and BPh4?, were synthesized: [Mn(3,5‐Cl2saltmen)Ni(pao)2(phen)]PF6 ( 1 ) and [Mn(5‐Clsaltmen)Ni(pao)2(phen)]BPh4 ( 2 ), where 3,5‐Cl2saltmen2?=N,N′‐(1,1,2,2‐tetramethylethylene)bis(3,5‐dichlorosalicylideneiminate); 5‐Clsaltmen2?=N,N′‐(1,1,2,2‐tetramethylethylene)bis(5‐chlorosalicylideneiminate); pao?=pyridine‐2‐aldoximate; and phen=1,10‐phenanthroline. Single‐crystal X‐ray diffraction study was carried out for both compounds. In 1 and 2 , the chain topology is very similar forming an alternating linear chain with a [‐MnIII‐ON‐NiII‐NO‐] repeating motif (where ‐ON‐ is the oximate bridge). The use of a bulky counteranion, such as BPh4?, located between the chains in 2 rather than PF6? in 1 , successfully led to the magnetic isolation of the chains in 2 . This minimization of the interchain interactions allows the study of the intrinsic magnetic properties of the chains present in 1 and 2 . While 1 and 2 possess, as expected, very similar paramagnetic properties above 15 K, their ground state is antiferromagnetic below 9.4 K and paramagnetic down to 1.8 K, respectively. Nevertheless, both compounds exhibit a magnet‐type behavior at temperatures below 6 K. While for 2 , the observed magnetism is well explained by a Single‐Chain Magnet (SCM) behavior, the magnet properties for 1 are induced by the presence in the material of SCM building units that order antiferromagnetically. By controlling both intra‐ and interchain magnetic interactions in this new [MnIIINiII] SCM system, a remarkable AF phase with a magnet‐type behavior has been stabilized in relation with the intrinsic SCM properties of the chains present in 1 . This result suggests that the simultaneous enhancement of both intrachain (J) and interchain (J′) magnetic interactions (with keeping J ? J′), independently of the presence of AF phase might be an efficient route to design high temperature SCM‐based magnets.  相似文献   

3.
Single crystals of γ‐K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3], that are linked through eleven‐coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α‐ and γ‐phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3] ions separated by K+ cations. The existence of polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two‐dimensional but different three‐dimensional arrangements.  相似文献   

4.
Simple and versatile routes to the functionalization of uranyl‐derived UV–oxo groups are presented. The oxo‐lithiated, binuclear uranium(V)–oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide “ate” complex [Li(py)2][(OUO)(N”)3] (N”=N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo‐metalated complexes display distinct U? O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo–stannylated complexes [{(R3Sn)OUO}2(L)] (R=nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium–oxo‐group exchange occurred in reactions with [TiCl(OiPr)3] to form U‐O? C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo‐functionalised by Group 14 elements.  相似文献   

5.
The title one‐dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6‐oxo‐1,6‐dihydro­pyridine‐2‐carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight‐ and 14‐membered rings and, in conjunction with an a‐axis translation, leads to an infinite chain extending along [100]. The Mn⋯Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans‐axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14‐membered ring is stabilized by pairs of inversion‐related N—H⋯O hydrogen bonds.  相似文献   

6.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   

7.
In the title compound, {[UO2(C7H6NO2)(OH)]}n, the U atom is in a seven‐coordinated pentagonal–bipyramidal environment. Each uranyl ion is bound to the N and one of the O atoms of a 2‐pyridylacetate ligand, to one O atom from a second ligand and to two bridging hydroxide groups, all located in the equatorial plane. Hydroxide bridging gives uranyl dimers, which are assembled into planar and rectilinear ribbons by carboxylate bridges. 12‐Membered rings are defined by proximal dimers in the ribbons, with two intra‐ring hydrogen bonds involving the hydroxide groups and two carboxylate O atoms.  相似文献   

8.
The title complex, di­aqua­di­pyridine­lithium (N‐methyl‐ptert‐butyl­dihomo­ammonio­calix­[4]­arene‐κ4O)­dioxouranium(VI) tri­pyridine solvate monohydrate, [Li(C5H5N)2(H2O)2][UO2(C46H58NO4)]·3C5H5N·H2O, contains an `internal' tetraphenoxide‐coordinated uranyl complex of the macrocycle, in which the protonated N atom is involved in an intramolecular hydrogen bond with the uranyl oxo group located in the cavity. The Li+ ion is in a tetrahedral environment and its two water ligands are involved in hydrogen bonds with two phenoxide O atoms, two pyridine mol­ecules and one water mol­ecule. This arrangement is compared with those obtained previously for other homo­aza­calixarenes and also for homo­oxa­calixarenes in the presence of alkali metal hydro­xides.  相似文献   

9.
X‐ray diffraction shows that the title cadmium(II) complex, [Cd2(C14H20O2)2(C5H5N)6]·2C5H5N, has a dimeric structure in which two (py)3Cd(3,5‐di‐tert‐butylcatecholate) units (py is pyridine) are connected by two bridging O atoms, the coordination of the Cd atoms being distorted octahedral. There are two symmetrically independent dimers in the crystal structure; one is in a general position and the other lies about an inversion centre. In both cases, the bridging Cd—O distances between the Cd–catecholate units [2.224 (2)–2.237 (2) Å] are shorter than the bridging Cd—O distances within the catecholate cycle [2.273 (2)–2.281 (2) Å]. The Cd—Npy distances are 2.354 (2)–2.471 (2) Å. Besides the main mol­ecules, the crystal also contains pyridine solvate mol­ecules.  相似文献   

10.
Uranyl nitrate hexahydrate reacts with bis­[2‐(2‐hydroxy­phenoxy)­ethoxy]­ethane (C18H22O6), denoted LH2 hereafter, in the presence of triethylamine to give ­triethylammonium aqua[2,2′‐(3,6‐dioxaoctane‐1,8‐diyldioxy)diphenolato‐κ2O,O′](nitrato‐κ2O,O′)dioxouranium(VI), (Et3NH)[UO2(H2O)L(NO3)], which possesses a symmetry plane. The uranyl ion is coordinated to the two phenoxide O atoms, a nitrate ion and a water mol­ecule (first sphere); the water mol­ecule is itself held in the crown ether chain by hydrogen‐bonding interactions, thus ensuring second‐sphere coordination by the ligand L.  相似文献   

11.
Three new cation-cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO(2)py(5))(KI(2)py(2))](n) (1) with the Schiff base ligands salen(2-), acacen(2-), and salophen(2-) (H(2)salen = N,N'-ethylene-bis(salicylideneimine), H(2)acacen = N,N'-ethylenebis(acetylacetoneimine), H(2)salophen = N,N'-phenylene-bis(salicylideneimine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen(2-) in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetranuclear complexes, {[UO(2)(acacen)](4)[μ(8)-](2)[K([18]C-6)(py)](2)} (3) and {[UO(2)(acacen)](4)[μ(8)-]}?2?[K([222])(py)] (4), {[UO(2)(salophen)](4)[μ(8)-K](2)[μ(5)-KI](2)[(K([18]C-6)]}?2?[K([18]C-6)(thf)(2)]?2?I (5), and {[UO(2)(salen)(4)][μ(8)-Rb](2)[Rb([18]C-6)](2)} (9) ([222] = [222]cryptand, py = pyridine), presenting a T-shaped cation-cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetranuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U(V)O(2)(salen)(py)][Cp*(2)Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation-cation complexes. The nature of the cation plays a key role in the preparation of stable cation-cation complexes. Stable tetranuclear complexes form in the presence of K(+) and Rb(+), whereas Li(+) leads to disproportionation. A new uranyl-oxo cluster was isolated from this reaction. The reaction of [U(V)O(2)(salen)(py)][Cp*(2)Co] (Cp* = pentamethylcyclopentadienyl) with its U(VI) analogue yields the oxo-functionalized dimer [UO(2)(salen)(py)](2)[Cp*(2)Co] (8). The reaction of the {[UO(2)(salen)(4)][μ(8)-K](2)[K([18]C-6)](2)} tetramer with protons leads to disproportionation to U(IV) and U(VI) species and H(2)O confirming the crucial role of the proton in the U(V) disproportionation.  相似文献   

12.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

13.
Anisotropic magnetic exchange is of great value for the design of high performance molecular nanomagnets. In the present work, enhanced single‐chain magnet (SCM) behavior is observed for a MoIII–MnII chain that exhibits anisotropic magnetic exchange. Self‐assembly of the pentagonal bipyramidal [Mo(CN)7]4? anion and the MnII unit with a tridentate ligand results in a neutral double zigzag 2,4‐ribbon structure which exhibits SCM behavior with a high relaxation barrier of 178(4) K. Open magnetic hysteresis loops are observed below 5.2 K, with a coercive field of 1.5 T at 2 K. Interestingly, this SCM can be considered to be a result of a step‐wise process based on our previously reported Mn2Mo single‐molecule magnets (SMMs).  相似文献   

14.
In the title dinuclear uranyl complex, (C18H38N2O6)[(UO2)2(NO3)4(OH)2]·H2O, each pair of uranyl ions in the two independent centrosymmetric dianionic dimers is bridged by the two hydroxide ions, with the nitrate ions ensuring equatorial hexagonal coordination. The di­hydro[2.2.2]­cryptand (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]­hexa­cosane) dication presents an `in–in' conformation (endo protonation) and it is hydrogen bonded to the hydroxide ions, either directly or via a water mol­ecule, resulting in the formation of linear hydrogen‐bonded polymers.  相似文献   

15.
We report a single‐chain magnet (SCM) made of a terbium(III) building block and a nitronyl‐nitroxide radical (NIT) functionalized with an aliphatic chain. This substitution is targeted to induce a long‐range distortion of the polymeric chain and accordingly it gives rise to chains that are curled with almost 20 nm helical pitch. They self‐organize as a chiral tubular superstructure made of 11 chains wound around each other. The supramolecular tubes have a 4.5 nm internal diameter. Overall, this forms a porous chiral network with almost 44 % porosity. Ab initio calculations highlight that each TbIII ion possesses high magnetic anisotropy. Indeed, notwithstanding the supramolecular arrangement each chain behaves as a SCM. Magnetic relaxation with both finite and infinite‐size regimes is observed and confirms the validity of the Ising approximation. This is associated with quite strong coercive field and magnetic remanence (Hc=2400 Oe MR=2.09 μB at 0.5 K) for this class of compounds.  相似文献   

16.
The title compound, [UO2(C33H38N2O2)2](CF3SO3)2·2C5H5N, has been obtained by reaction of UIV tri­fluoro­methane­sulfonate with ptert‐butyl­tetrahomodioxacalix­[4]­arene in pyridine. The uranyl ion lies on an inversion centre and is bound to two O atoms from each diphenoxide ligand, which gives the usual square‐planar equatorial environment. The zwitterionic diphenoxide species results from nucleophilic attack by pyridine on the benzylic ether C atoms of the homooxacalixarene, assisted by initial U coordination to the ether groups, with subsequent metal oxidation giving the uranyl moiety.  相似文献   

17.
There are two kinds of coordination polymers in the title compound: one contains Cd(NO3)2 units bridged by 2,6‐bis(N′‐1,2,4‐triazolyl)pyridine (btp) ligands and the other contains Cd(H2O)22+ bridged by btp ligands. The two coordination polymers are connected through hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The title salt, C6H6NO2+·ClO4·C6H5NO2, was crystallized from an aqueous solution of equimolar quantities of perchloric acid and pyridine‐2‐carboxylic acid. Differential scanning calorimetry (DSC) measurements show that the compound undergoes a reversible phase transition at about 261.7 K, with a wide heat hysteresis of 21.9 K. The lower‐temperature polymorph (denoted LT; T = 223 K) crystallizes in the space group C2/c, while the higher‐temperature polymorph (denoted RT; T = 296 K) crystallizes in the space group P2/c. The relationship between these two phases can be described as: 2aRT = aLT; 2bRT = bLT; cRT = cLT. The crystal structure contains an infinite zigzag hydrogen‐bonded chain network of 2‐carboxypyridinium cations. The most distinct difference between the higher (RT) and lower (LT) temperature phases is the change in dihedral angle between the planes of the carboxylic acid group and the pyridinium ring, which leads to the formation of different ten‐membered hydrogen‐bonded rings. In the RT phase, both the perchlorate anions and the hydrogen‐bonded H atom within the carboxylic acid group are disordered. The disordered H atom is located on a twofold rotation axis. In the LT phase, the asymmetric unit is composed of two 2‐carboxypyridinium cations, half an ordered perchlorate anion with ideal tetrahedral geometry and a disordered perchlorate anion. The phase transition is attributable to the order–disorder transition of half of the perchlorate anions.  相似文献   

19.
The title compound, [Cd(C6H4NO2)2(H2O)2]n, forms a one‐dimensional chain structure based on a Cd atom with approximate pentagonal bipyramidal coordination geometry and two nicotinate ligands in different coordination modes. One acts as a tridentate ligand, chelating one Cd atom through the carboxyl­ate group while simultaneously binding to a second symmetry‐related Cd atom through the pyridine N atom; the other acts only as a bidentate ligand through its carboxyl­ate group. Hydro­gen bonds utilizing the coordinated water mol­ecules, uncoordinated nitro­gen and carboxyl­ate O atoms as acceptors link the chains.  相似文献   

20.
Reaction of FeCl2?4 H2O with KNCSe and pyridine in ethanol leads to the formation of the discrete complex [Fe(NCSe)2(pyridine)4] ( 1 ) in which the FeII cations are coordinated by two N‐terminal‐bonded selenocyanato anions and four pyridine co‐ligands. Thermal treatment of compound 1 enforces the removal of half of the co‐ligands leading to the formation of a ligand‐deficient (lacking on neutral co‐ligands) intermediate of composition [Fe(NCSe)2(pyridine)2]n ( 2 ) to which we have found no access in the liquid phase. Compound 2 is obtained only as a microcrystalline powder, but it is isotypic to [Cd(NCSe)2(pyridine)2]n and therefore, its structure was determined by Rietveld refinement. In its crystal structure the metal cations are coordinated by two pyridine ligands and four selenocyanato anions and are linked into chains by μ‐1,3 bridging anionic ligands. Magnetic measurements on compound 1 show only paramagnetic behavior, whereas for compound 2 an unexpected magnetic behavior is found, which to the best of our knowledge was never observed before for a iron(II) homospin compound. In this compound metamagnetism and single‐chain magnetic behavior coexist. The metamagnetic transition between the antiferromagnetically ordered phase and a field‐induced ferromagnetic phase of the high‐spin iron(II) spin carriers is observed at a transition field HC of 1300 Oe and the single‐chain magnetic behavior is characterized by a blocking temperature TB, estimated to be about 5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号